This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

1979 Vietnam National Olympiad, 3

$ABC$ is a triangle. Find a point $X$ on $BC$ such that : area $ABX$ / area $ACX$ = perimeter $ABX$ / perimeter $ACX$.

2003 Vietnam Team Selection Test, 1

On the sides of triangle $ABC$ take the points $M_1, N_1, P_1$ such that each line $MM_1, NN_1, PP_1$ divides the perimeter of $ABC$ in two equal parts ($M, N, P$ are respectively the midpoints of the sides $BC, CA, AB$). [b]I.[/b] Prove that the lines $MM_1, NN_1, PP_1$ are concurrent at a point $K$. [b]II.[/b] Prove that among the ratios $\frac{KA}{BC}, \frac{KB}{CA}, \frac{KC}{AB}$ there exist at least a ratio which is not less than $\frac{1}{\sqrt{3}}$.

1977 IMO Longlists, 48

The intersection of a plane with a regular tetrahedron with edge $a$ is a quadrilateral with perimeter $P.$ Prove that $2a \leq P \leq 3a.$

2012 Kazakhstan National Olympiad, 1

Let $k_{1},k_{2}, k_{3}$ -Excircles triangle $A_{1}A_{2}A_{3}$ with area $S$. $ k_{1}$ touch side $A_{2}A_{3} $ at the point $B_{1}$ Direct $A_{1}B_{1}$ intersect $k_{1}$ at the points $B_{1}$ and $C_{1}$.Let $S_{1}$ - area of ​​the quadrilateral $A_{1}A_{2}C_{1}A_{3}$ Similarly, we define $S_{2}, S_{3}$. Prove that $\frac{1}{S}\le \frac{1}{S_{1}}+\frac{1}{S_{2}}+\frac{1}{S_{2}}$

2017 Peru Iberoamerican Team Selection Test, P1

Let $C_1$ and $C_2$ be tangent circles internally at point $A$, with $C_2$ inside of $C_1$. Let $BC$ be a chord of $C_1$ that is tangent to $C_2$. Prove that the ratio between the length $BC$ and the perimeter of the triangle $ABC$ is constant, that is, it does not depend of the selection of the chord $BC$ that is chosen to construct the trangle.

Novosibirsk Oral Geo Oly VIII, 2020.2

Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?

1982 AMC 12/AHSME, 4

The perimeter of a semicircular region, measured in centimeters, is numerically equal to its area, measured in square centimeters. The radius of the semicircle, measured in centimeters, is $\text{(A)} \pi \qquad \text{(B)} \frac{2}{\pi} \qquad \text{(C)} 1 \qquad \text{(D)} \frac{1}{2} \qquad \text{(E)} \frac{4}{\pi} + 2$

1984 IMO, 2

Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that: \[ n\minus{}3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n\plus{}1\over 2}\Bigr]\minus{}2,\] where $ [x]$ denotes the greatest integer not exceeding $ x$.

2003 Korea - Final Round, 1

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

2011 Morocco National Olympiad, 2

Let $\alpha , \beta ,\gamma$ be the angles of a triangle $ABC$ of perimeter $ 2p $ and $R$ is the radius of its circumscribed circle. $(a)$ Prove that \[\cot^{2}\alpha +\cot^{2}\beta+\cot^{2}\gamma\geq 3\left(9\cdot \frac{R^{2}}{p^{2}} - 1\right).\] $(b)$ When do we have equality?

2012 Portugal MO, 2

In triangle $[ABC]$, the bissector of the angle $\angle{BAC}$ intersects the side $[BC]$ at $D$. Suppose that $\overline{AD}=\overline{CD}$. Find the lengths $\overline{BC}$, $\overline{AC}$ and $\overline{AB}$ that minimize the perimeter of $[ABC]$, given that all the sides of the triangles $[ABC]$ and $[ADC]$ have integer lengths.

1988 Bundeswettbewerb Mathematik, 3

Prove that all acute-angled triangles with the equal altitudes $h_c$ and the equal angles $\gamma$ have orthic triangles with same perimeters.

2006 Sharygin Geometry Olympiad, 8.1

Inscribe the equilateral triangle of the largest perimeter in a given semicircle.

2014 Math Prize For Girls Problems, 14

A triangle has area 114 and sides of integer length. What is the perimeter of the triangle?

1999 German National Olympiad, 4

A convex polygon $P$ is placed inside a unit square $Q$. Prove that the perimeter of $P$ does not exceed $4$.

2012 Online Math Open Problems, 30

The Lattice Point Jumping Frog jumps between lattice points in a coordinate plane that are exactly $1$ unit apart. The Lattice Point Jumping Frog starts at the origin and makes $8$ jumps, ending at the origin. Additionally, it never lands on a point other than the origin more than once. How many possible paths could the frog have taken? [i]Author: Ray Li[/i] [hide="Clarifications"] [list=1][*]The Lattice Jumping Frog is allowed to visit the origin more than twice. [*]The path of the Lattice Jumping Frog is an ordered path, that is, the order in which the Lattice Jumping Frog performs its jumps matters.[/list][/hide]

2007 AMC 12/AHSME, 6

Triangle $ ABC$ has side lengths $ AB \equal{} 5$, $ BC \equal{} 6$, and $ AC \equal{} 7$. Two bugs start simultaneously from $ A$ and crawl along the sides of the triangle in opposite directions at the same speed. They meet at point $ D$. What is $ BD$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

1959 AMC 12/AHSME, 21

If $p$ is the perimeter of an equilateral triangle inscribed in a circle, the area of the circle is: $ \textbf{(A)}\ \frac{\pi p^2}{3} \qquad\textbf{(B)}\ \frac{\pi p^2}{9}\qquad\textbf{(C)}\ \frac{\pi p^2}{27}\qquad\textbf{(D)}\ \frac{\pi p^2}{81} \qquad\textbf{(E)}\ \frac{\pi p^2 \sqrt3}{27} $

2006 Pre-Preparation Course Examination, 1

Show that for a triangle we have \[ \max \{am_a,bm_b,cm_c\} \leq sR \] where $m_a$ denotes the length of median of side $BC$ and $s$ is half of the perimeter of the triangle.

2011 Tokio University Entry Examination, 3

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2011 AMC 12/AHSME, 13

Triangle $ABC$ has side-lengths $AB=12$, $BC=24$, and $AC=18$. The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N$. What is the perimeter of $\triangle AMN$? $ \textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 33 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 42 $

2008 ISI B.Stat Entrance Exam, 1

Of all triangles with given perimeter, find the triangle with the maximum area. Justify your answer

2002 Germany Team Selection Test, 2

Prove: If $x, y, z$ are the lengths of the angle bisectors of a triangle with perimeter 6, than we have: \[\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \geq 1.\]

2017 Novosibirsk Oral Olympiad in Geometry, 3

Medians $AA_1, BB_1, CC_1$ and altitudes $AA_2, BB_2, CC_2$ are drawn in triangle $ABC$ . Prove that the length of the broken line $A_1B_2C_1A_2B_1C_2A_1$ is equal to the perimeter of triangle $ABC$.

1999 AIME Problems, 4

The two squares shown share the same center $O$ and have sides of length 1. The length of $\overline{AB}$ is $43/99$ and the area of octagon $ABCDEFGH$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$ [asy] real alpha = 25; pair W=dir(225), X=dir(315), Y=dir(45), Z=dir(135), O=origin; pair w=dir(alpha)*W, x=dir(alpha)*X, y=dir(alpha)*Y, z=dir(alpha)*Z; draw(W--X--Y--Z--cycle^^w--x--y--z--cycle); pair A=intersectionpoint(Y--Z, y--z), C=intersectionpoint(Y--X, y--x), E=intersectionpoint(W--X, w--x), G=intersectionpoint(W--Z, w--z), B=intersectionpoint(Y--Z, y--x), D=intersectionpoint(Y--X, w--x), F=intersectionpoint(W--X, w--z), H=intersectionpoint(W--Z, y--z); dot(O); label("$O$", O, SE); label("$A$", A, dir(O--A)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$D$", D, dir(O--D)); label("$E$", E, dir(O--E)); label("$F$", F, dir(O--F)); label("$G$", G, dir(O--G)); label("$H$", H, dir(O--H));[/asy]