This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

2004 China Team Selection Test, 2

Two equal-radii circles with centres $ O_1$ and $ O_2$ intersect each other at $ P$ and $ Q$, $ O$ is the midpoint of the common chord $ PQ$. Two lines $ AB$ and $ CD$ are drawn through $ P$ ( $ AB$ and $ CD$ are not coincide with $ PQ$ ) such that $ A$ and $ C$ lie on circle $ O_1$ and $ B$ and $ D$ lie on circle $ O_2$. $ M$ and $ N$ are the mipoints of segments $ AD$ and $ BC$ respectively. Knowing that $ O_1$ and $ O_2$ are not in the common part of the two circles, and $ M$, $ N$ are not coincide with $ O$. Prove that $ M$, $ N$, $ O$ are collinear.

1964 IMO, 3

A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).

1958 AMC 12/AHSME, 31

The altitude drawn to the base of an isosceles triangle is $ 8$, and the perimeter $ 32$. The area of the triangle is: $ \textbf{(A)}\ 56\qquad \textbf{(B)}\ 48\qquad \textbf{(C)}\ 40\qquad \textbf{(D)}\ 32\qquad \textbf{(E)}\ 24$

1988 India National Olympiad, 7

Given an angle $ \angle QBP$ and a point $ L$ outside the angle $ \angle QBP$. Draw a straight line through $ L$ meeting $ BQ$ in $ A$ and $ BP$ in $ C$ such that the triangle $ \triangle ABC$ has a given perimeter.

2019 Romanian Master of Mathematics Shortlist, G5

A quadrilateral $ABCD$ is circumscribed about a circle with center $I$. A point $P \ne I$ is chosen inside $ABCD$ so that the triangles $PAB, PBC, PCD,$ and $PDA$ have equal perimeters. A circle $\Gamma$ centered at $P$ meets the rays $PA, PB, PC$, and $PD$ at $A_1, B_1, C_1$, and $D_1$, respectively. Prove that the lines $PI, A_1C_1$, and $B_1D_1$ are concurrent. Ankan Bhattacharya, USA

2011 Purple Comet Problems, 20

Points $A$ and $B$ are the endpoints of a diameter of a circle with center $C$. Points $D$ and $E$ lie on the same diameter so that $C$ bisects segment $\overline{DE}$. Let $F$ be a randomly chosen point within the circle. The probability that $\triangle DEF$ has a perimeter less than the length of the diameter of the circle is $\tfrac{17}{128}$. There are relatively prime positive integers m and n so that the ratio of $DE$ to $AB$ is $\tfrac{m}{n}.$ Find $m + n$.

2002 China Girls Math Olympiad, 7

An acute triangle $ ABC$ has three heights $ AD, BE$ and $ CF$ respectively. Prove that the perimeter of triangle $ DEF$ is not over half of the perimeter of triangle $ ABC.$

2014 Balkan MO Shortlist, N3

$\boxed{N3}$Prove that there exist infinitely many non isosceles triangles with rational side lengths$,$rational lentghs of altitudes and$,$ perimeter equal to $3.$

1983 Tournament Of Towns, (049) 1

On sides $CB$ and $CD$ of square $ABCD$ are chosen points $M$ and $K$ so that the perimeter of triangle $CMK$ equals double the side of the square. Find angle $\angle MAK$.

2011 BMO TST, 2

The area and the perimeter of the triangle with sides $10,8,6$ are equal. Find all the triangles with integral sides whose area and perimeter are equal.

2011 Stars Of Mathematics, 3

The checkered plane is painted black and white, after a chessboard fashion. A polygon $\Pi$ of area $S$ and perimeter $P$ consists of some of these unit squares (i.e., its sides go along the borders of the squares). Prove the polygon $\Pi$ contains not more than $\dfrac {S} {2} + \dfrac {P} {8}$, and not less than $\dfrac {S} {2} - \dfrac {P} {8}$ squares of a same color. (Alexander Magazinov)

2014 Balkan MO, 4

Let $n$ be a positive integer. A regular hexagon with side length $n$ is divided into equilateral triangles with side length $1$ by lines parallel to its sides. Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles. [i]UK - Sahl Khan[/i]

1998 South africa National Olympiad, 2

Find the maximum value of \[ \sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} \] where $\alpha,\beta$ and $\gamma$ are positive and $\alpha + \beta + \gamma = 180^{\circ}$.

2001 Bundeswettbewerb Mathematik, 4

A square $ R$ of sidelength $ 250$ lies inside a square $ Q$ of sidelength $ 500$. Prove that: One can always find two points $ A$ and $ B$ on the perimeter of $ Q$ such that the segment $ AB$ has no common point with the square $ R$, and the length of this segment $ AB$ is greater than $ 521$.

2008 All-Russian Olympiad, 6

A magician should determine the area of a hidden convex $ 2008$-gon $ A_{1}A_{2}\cdots A_{2008}$. In each step he chooses two points on the perimeter, whereas the chosen points can be vertices or points dividing selected sides in selected ratios. Then his helper divides the polygon into two parts by the line through these two points and announces the area of the smaller of the two parts. Show that the magician can find the area of the polygon in $ 2006$ steps.

2015 AMC 12/AHSME, 19

In $\triangle{ABC}$, $\angle{C} = 90^{\circ}$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X, Y, Z$, and $W$ lie on a circle. What is the perimeter of the triangle? $ \textbf{(A)}\ 12+9\sqrt{3}\qquad\textbf{(B)}\ 18+6\sqrt{3}\qquad\textbf{(C)}\ 12+12\sqrt{2}\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 32 $

2014 HMNT, 9

In equilateral triangle $ABC$ with side length $2$, let the parabola with focus $A$ and directrix $BC$ intersect sides $AB$ and $AC$ at $A_1$ and $A_2$, respectively. Similarly, let the parabola with focus $B$ and directrix $CA$ intersect sides $BC$ and $BA$ at $B_1$ and $B_2$, respectively. Finally, let the parabola with focus $C$ and directrix $AB$ intersect sides $CA$ and $C_B$ at $C_1$ and $C_2$, respectively. Find the perimeter of the triangle formed by lines $A_1A_2$, $B_1B_2$, $C_1C_2$.

2024-25 IOQM India, 30

Let $ABC$ be a right-angled triangle with $\angle B = 90^{\circ}$. Let the length of the altitude $BD$ be equal to $12$. What is the minimum possible length of $AC$, given that $AC$ and the perimeter of triangle $ABC$ are integers?

2001 South africa National Olympiad, 1

$ABCD$ is a convex quadrilateral with perimeter $p$. Prove that \[ \dfrac{1}{2}p < AC + BD < p. \] (A polygon is convex if all of its interior angles are less than $180^\circ$.)

2006 Harvard-MIT Mathematics Tournament, 1

Octagon $ABCDEFGH$ is equiangular. Given that $AB=1$, $BC=2$, $CD=3$, $DE=4$, and $EF=FG=2$, compute the perimeter of the octagon.

1999 IMO Shortlist, 1

Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]

2010 Polish MO Finals, 1

On the side $BC$ of the triangle $ABC$ there are two points $D$ and $E$ such that $BD < BE$. Denote by $p_1$ and $p_2$ the perimeters of triangles $ABC$ and $ADE$ respectively. Prove that \[p_1 > p_2 + 2\cdot \min\{BD, EC\}.\]

2004 Germany Team Selection Test, 3

Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \] [i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$. Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$. [i]Proposed by Dirk Laurie, South Africa[/i]

2023 AMC 10, 24

What is the perimeter of the boundary of the region consisting of all points which can be expressed as $(2u-3w,v+4w)$ with $0 \le u \le 1$, $0 \le v \le 1$, and $0 \le w \le 1$? \\ \\ $\textbf{(A) } 10\sqrt{3} \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 16$

2017 Purple Comet Problems, 13

Let $ABCDE$ be a pentagon with area $2017$ such that four of its sides $AB, BC, CD$, and $EA$ have integer length. Suppose that $\angle A = \angle B = \angle C = 90^o$, $AB = BC$, and $CD = EA$. The maximum possible perimeter of $ABCDE$ is $a + b \sqrt{c}$, where $a$, $b$, and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a + b + c$.