This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

1985 Traian Lălescu, 1.1

Consider the function $ f:\mathbb{R}\longrightarrow\mathbb{R} ,\quad f(x)=\max (x-3,2) . $ Find the perimeter and the area of the figure delimited by the lines $ x=-3,x=1, $ the $ Ox $ axis, and the graph of $ f. $

2016 Canadian Mathematical Olympiad Qualification, 2

Let $P = (7, 1)$ and let $O = (0, 0)$. (a) If $S$ is a point on the line $y = x$ and $T$ is a point on the horizontal $x$-axis so that $P$ is on the line segment $ST$, determine the minimum possible area of triangle $OST$. (b) If $U$ is a point on the line $y = x$ and $V$ is a point on the horizontal $x$-axis so that $P$ is on the line segment $UV$, determine the minimum possible perimeter of triangle $OUV$.

2001 Bundeswettbewerb Mathematik, 4

A square $ R$ of sidelength $ 250$ lies inside a square $ Q$ of sidelength $ 500$. Prove that: One can always find two points $ A$ and $ B$ on the perimeter of $ Q$ such that the segment $ AB$ has no common point with the square $ R$, and the length of this segment $ AB$ is greater than $ 521$.

1949 Moscow Mathematical Olympiad, 159

Consider a closed broken line of perimeter $1$ on a plane. Prove that a disc of radius $\frac14$ can cover this line.

2008 All-Russian Olympiad, 6

A magician should determine the area of a hidden convex $ 2008$-gon $ A_{1}A_{2}\cdots A_{2008}$. In each step he chooses two points on the perimeter, whereas the chosen points can be vertices or points dividing selected sides in selected ratios. Then his helper divides the polygon into two parts by the line through these two points and announces the area of the smaller of the two parts. Show that the magician can find the area of the polygon in $ 2006$ steps.

2014 Purple Comet Problems, 15

A large rectangle is tiled by some $1\times1$ tiles. In the center there is a small rectangle tiled by some white tiles. The small rectangle is surrounded by a red border which is fi ve tiles wide. That red border is surrounded by a white border which is fi ve tiles wide. Finally, the white border is surrounded by a red border which is five tiles wide. The resulting pattern is pictured below. In all, $2900$ red tiles are used to tile the large rectangle. Find the perimeter of the large rectangle. [asy] import graph; size(5cm); fill((-5,-5)--(0,-5)--(0,35)--(-5,35)--cycle^^(50,-5)--(55,-5)--(55,35)--(50,35)--cycle,red); fill((0,30)--(0,35)--(50,35)--(50,30)--cycle^^(0,-5)--(0,0)--(50,0)--(50,-5)--cycle,red); fill((-15,-15)--(-10,-15)--(-10,45)--(-15,45)--cycle^^(60,-15)--(65,-15)--(65,45)--(60,45)--cycle,red); fill((-10,40)--(-10,45)--(60,45)--(60,40)--cycle^^(-10,-15)--(-10,-10)--(60,-10)--(60,-15)--cycle,red); fill((-10,-10)--(-5,-10)--(-5,40)--(-10,40)--cycle^^(55,-10)--(60,-10)--(60,40)--(55,40)--cycle,white); fill((-5,35)--(-5,40)--(55,40)--(55,35)--cycle^^(-5,-10)--(-5,-5)--(55,-5)--(55,-10)--cycle,white); for(int i=0;i<16;++i){ draw((-i,-i)--(50+i,-i)--(50+i,30+i)--(-i,30+i)--cycle,linewidth(.5)); } [/asy]

2012 Iran Team Selection Test, 1

Consider a regular $2^k$-gon with center $O$ and label its sides clockwise by $l_1,l_2,...,l_{2^k}$. Reflect $O$ with respect to $l_1$, then reflect the resulting point with respect to $l_2$ and do this process until the last side. Prove that the distance between the final point and $O$ is less than the perimeter of the $2^k$-gon. [i]Proposed by Hesam Rajabzade[/i]

2006 AMC 10, 10

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle? $ \textbf{(A) } 43 \qquad \textbf{(B) } 44 \qquad \textbf{(C) } 45 \qquad \textbf{(D) } 46 \qquad \textbf{(E) } 47$

2003 AMC 12-AHSME, 7

How many non-congruent triangles with perimeter $ 7$ have integer side lengths? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

2004 USA Team Selection Test, 3

Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array?

2008 AMC 8, 17

Ms.Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of $50$ units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles? $\textbf{(A)}\ 76\qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 128\qquad \textbf{(D)}\ 132\qquad \textbf{(E)}\ 136$

2002 Iran Team Selection Test, 4

$O$ is a point in triangle $ABC$. We draw perpendicular from $O$ to $BC,AC,AB$ which intersect $BC,AC,AB$ at $A_{1},B_{1},C_{1}$. Prove that $O$ is circumcenter of triangle $ABC$ iff perimeter of $ABC$ is not less than perimeter of triangles $AB_{1}C_{1},BC_{1}A_{1},CB_{1}A_{1}$.

1986 IMO Longlists, 50

Let $D$ be the point on the side $BC$ of the triangle $ABC$ such that $AD$ is the bisector of $\angle CAB$. Let $I$ be the incenter of$ ABC.$ [i](a)[/i] Construct the points $P$ and $Q$ on the sides $AB$ and $AC$, respectively, such that $PQ$ is parallel to $BC$ and the perimeter of the triangle $APQ$ is equal to $k \cdot BC$, where $k$ is a given rational number. [i](b) [/i]Let $R$ be the intersection point of $PQ$ and $AD$. For what value of $k$ does the equality $AR = RI$ hold? [i](c)[/i] In which case do the equalities $AR = RI = ID$ hold?

2015 AMC 10, 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible? $\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

1981 All Soviet Union Mathematical Olympiad, 318

The points $C_1, A_1, B_1$ belong to $[AB], [BC], [CA]$ sides, respectively, of the triangle $ABC$ . $$\frac{|AC_1|}{|C_1B| }=\frac{ |BA_1|}{|A_1C| }= \frac{|CB_1|}{|B_1A| }= \frac{1}{3}$$ Prove that the perimeter $P$ of the triangle $ABC$ and the perimeter $p$ of the triangle $A_1B_1C_1$ , satisfy inequality $$\frac{P}{2} < p < \frac{3P}{4}$$

1990 IMO Longlists, 76

Prove that there exist at least two non-congruent quadrilaterals, both having a circumcircle, such that they have equal perimeters and areas.

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

OIFMAT III 2013, 8

$ABCD$ is a trapezoid with $AB$ parallel to $CD$. The external bisectors of the angles at $ B$ and $C$ intersect at $ P$. The external bisectors of the angles at $ A$ and $D$ intersect at $Q$. Show that the length of $PQ$ is equal to half the perimeter of the trapezoid $ABCD$.

2016 Saudi Arabia Pre-TST, 1.2

Let $ABC$ be a non isosceles triangle inscribed in a circle $(O)$ and $BE, CF$ are two angle bisectors intersect at $I$ with $E$ belongs to segment $AC$ and $F$ belongs to segment $AB$. Suppose that $BE, CF$ intersect $(O)$ at $M,N$ respectively. The line $d_1$ passes through $M$ and perpendicular to $BM$ intersects $(O)$ at the second point $P,$ the line $d_2$ passes through $N$ and perpendicular to $CN$ intersect $(O)$ at the second point $Q$. Denote $H, K$ are two midpoints of $MP$ and $NQ$ respectively. 1. Prove that triangles $IEF$ and $OKH$ are similar. 2. Suppose that S is the intersection of two lines $d_1$ and $d_2$. Prove that $SO$ is perpendicular to $EF$.

2002 District Olympiad, 4

The cube $ABCDA' B' C' D' $has of length a. Consider the points $K \in [AB], L \in [CC' ], M \in [D'A']$. a) Show that $\sqrt3 KL \ge KB + BC + CL$ b) Show that the perimeter of triangle $KLM$ is strictly greater than $2a\sqrt3$.

1986 Flanders Math Olympiad, 1

A circle with radius $R$ is divided into twelve equal parts. The twelve dividing points are connected with the centre of the circle, producing twelve rays. Starting from one of the dividing points a segment is drawn perpendicular to the next ray in the clockwise sense; from the foot of this perpendicular another perpendicular segment is drawn to the next ray, and the process is continued [i]ad infinitum[/i]. What is the limit of the sum of these segments (in terms of $R$)? [img]https://cdn.artofproblemsolving.com/attachments/2/6/83705b54ecc817b7d913468cd8467d7b8d9f8f.png[/img]

IV Soros Olympiad 1997 - 98 (Russia), 11.10

The perimeter of triangle $ABC$ is $k$ times larger than side $BC$, $AB \ne AC$. In what ratio does the median to side $BC$ divide the diameter of the circle inscribed in this triangle, perpendicular to this side?

2000 South africa National Olympiad, 4

$ABCD$ is a square of side 1. $P$ and $Q$ are points on $AB$ and $BC$ such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\Delta PBQ$.

2009 Sharygin Geometry Olympiad, 2

Given nonisosceles triangle $ ABC$. Consider three segments passing through different vertices of this triangle and bisecting its perimeter. Are the lengths of these segments certainly different?

2008 Tournament Of Towns, 5

On a straight track are several runners, each running at a di fferent constant speed. They start at one end of the track at the same time. When a runner reaches any end of the track, he immediately turns around and runs back with the same speed (then he reaches the other end and turns back again, and so on). Some time after the start, all runners meet at the same point. Prove that this will happen again.