Found problems: 663
2013 ELMO Shortlist, 14
Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$.
Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ [i]bad[/i] if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$.
(a) Prove that $L$ is nonempty.
(b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$.
[i]Proposed by David Yang[/i]
Today's calculation of integrals, 858
On the plane $S$ in a space, given are unit circle $C$ with radius 1 and the line $L$. Find the volume of the solid bounded by the curved surface formed by the point $P$ satifying the following condition $(a),\ (b)$.
$(a)$ The point of intersection $Q$ of the line passing through $P$ and perpendicular to $S$ are on the perimeter or the inside of $C$.
$(b)$ If $A,\ B$ are the points of intersection of the line passing through $Q$ and pararell to $L$, then $\overline{PQ}=\overline{AQ}\cdot \overline{BQ}$.
2014 Oral Moscow Geometry Olympiad, 5
Segment $AD$ is the diameter of the circumscribed circle of an acute-angled triangle $ABC$. Through the intersection of the altitudes of this triangle, a straight line was drawn parallel to the side $BC$, which intersects sides $AB$ and $AC$ at points $E$ and $F$, respectively. Prove that the perimeter of the triangle $DEF$ is two times larger than the side $BC$.
1999 AMC 8, 14
In trapezoid $ABCD$ , the sides $AB$ and $CD$ are equal. The perimeter of $ABCD$ is
[asy]
draw((0,0)--(4,3)--(12,3)--(16,0)--cycle);
draw((4,3)--(4,0),dashed);
draw((3.2,0)--(3.2,.8)--(4,.8));
label("$A$",(0,0),SW);
label("$B$",(4,3),NW);
label("$C$",(12,3),NE);
label("$D$",(16,0),SE);
label("$8$",(8,3),N);
label("$16$",(8,0),S);
label("$3$",(4,1.5),E);[/asy]
$ \text{(A)}\ 27\qquad\text{(B)}\ 30\qquad\text{(C)}\ 32\qquad\text{(D)}\ 34\qquad\text{(E)}\ 48 $
2004 China Team Selection Test, 2
Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.
2009 Portugal MO, 2
Points $N$ and $M$ are on the sides $CD$ and $BC$ of square $ABCD$, respectively. The perimeter of triangle $MCN$ is equal to the double of the length of the square's side. Find $\angle MAN$.
1994 Baltic Way, 15
Does there exist a triangle such that the lengths of all its sides and altitudes are integers and its perimeter is equal to $1995$?
2003 CentroAmerican, 4
$S_1$ and $S_2$ are two circles that intersect at two different points $P$ and $Q$. Let $\ell_1$ and $\ell_2$ be two parallel lines such that $\ell_1$ passes through the point $P$ and intersects $S_1,S_2$ at $A_1,A_2$ respectively (both distinct from $P$), and $\ell_2$ passes through the point $Q$ and intersects $S_1,S_2$ at $B_1,B_2$ respectively (both distinct from $Q$).
Show that the triangles $A_1QA_2$ and $B_1PB_2$ have the same perimeter.
2013 All-Russian Olympiad, 4
On a $55\times 55$ square grid, $500$ unit squares were cut out as well as $400$ L-shaped pieces consisting of 3 unit squares (each piece can be oriented in any way) [refer to the figure]. Prove that at least two of the cut out pieces bordered each other before they were cut out.
[asy]size(2.013cm);
draw ((0,0)--(0,1));
draw ((0,0)--(1,0));
draw ((0,1)--(.5,1));
draw ((.5,1)--(.5,0));
draw ((0,.5)--(1,.5));
draw ((1,.5)--(1,0));
draw ((1,.5)--(1,0));
[/asy]
2013 Singapore MO Open, 5
Let $ABC$ be a triangle with integral side lengths such that $\angle A=3\angle B$. Find the minimum value of its perimeter.
2009 IMO Shortlist, 4
For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2005 Hungary-Israel Binational, 1
Squares $ABB_{1}A_{2}$ and $BCC_{1}B_{2}$ are externally drawn on the hypotenuse $AB$ and on the leg $BC$ of a right triangle $ABC$ . Show that the lines $CA_{2}$ and $AB_{2}$ meet on the perimeter of a square with the vertices on the perimeter of triangle $ABC .$
2019 Saint Petersburg Mathematical Olympiad, 4
A non-equilateral triangle $\triangle ABC$ of perimeter $12$ is inscribed in circle $\omega$ .Points $P$ and $Q$ are arc midpoints of arcs $ABC$ and $ACB$ , respectively. Tangent to $\omega$ at $A$ intersects line $PQ$ at $R$.
It turns out that the midpoint of segment $AR$ lies on line $BC$ . Find the length of the segment $BC$.
[i] (А. Кузнецов)[/i]
2006 AMC 8, 6
The letter T is formed by placing two $ 2\times 4$ inch rectangles next to each other, as shown. What is the perimeter of the T, in inches?
[asy]size(150);
draw((0,6)--(4,6)--(4,4)--(3,4)--(3,0)--(1,0)--(1,4)--(0,4)--cycle, linewidth(1));[/asy]
$ \textbf{(A)}\ 12 \qquad
\textbf{(B)}\ 16 \qquad
\textbf{(C)}\ 20 \qquad
\textbf{(D)}\ 22 \qquad
\textbf{(E)}\ 24$
1985 Traian Lălescu, 1.1
Consider the function $ f:\mathbb{R}\longrightarrow\mathbb{R} ,\quad f(x)=\max (x-3,2) . $ Find the perimeter and the area of the figure delimited by the lines $ x=-3,x=1, $ the $ Ox $ axis, and the graph of $ f. $
1994 AMC 12/AHSME, 8
In the polygon shown, each side is perpendicular to its adjacent sides, and all 28 of the sides are congruent. The perimeter of the polygon is $56$. The area of the region bounded by the polygon is
[asy]
draw((0,0)--(1,0)--(1,-1)--(2,-1)--(2,-2)--(3,-2)--(3,-3)--(4,-3)--(4,-2)--(5,-2)--(5,-1)--(6,-1)--(6,0)--(7,0)--(7,1)--(6,1)--(6,2)--(5,2)--(5,3)--(4,3)--(4,4)--(3,4)--(3,3)--(2,3)--(2,2)--(1,2)--(1,1)--(0,1)--cycle);
[/asy]
$ \textbf{(A)}\ 84 \qquad\textbf{(B)}\ 96 \qquad\textbf{(C)}\ 100 \qquad\textbf{(D)}\ 112 \qquad\textbf{(E)}\ 196 $
2009 Sharygin Geometry Olympiad, 1
The midpoint of triangle's side and the base of the altitude to this side are symmetric wrt the touching point of this side with the incircle. Prove that this side equals one third of triangle's perimeter.
(A.Blinkov, Y.Blinkov)
2014 Online Math Open Problems, 11
Given a triangle $ABC$, consider the semicircle with diameter $\overline{EF}$ on $\overline{BC}$ tangent to $\overline{AB}$ and $\overline{AC}$. If $BE=1$, $EF=24$, and $FC=3$, find the perimeter of $\triangle{ABC}$.
[i]Proposed by Ray Li[/i]
1957 AMC 12/AHSME, 37
In right triangle $ ABC$, $ BC \equal{} 5$, $ AC \equal{} 12$, and $ AM \equal{} x$; $ \overline{MN} \perp \overline{AC}$, $ \overline{NP} \perp \overline{BC}$; $ N$ is on $ AB$. If $ y \equal{} MN \plus{} NP$, one-half the perimeter of rectangle $ MCPN$, then:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair A = origin;
pair M = (1,0);
pair C = (2,0);
pair P = (2,0.5);
pair B = (2,1);
pair Q = (1,0.5);
draw(A--B--C--cycle);
draw(M--Q--P);
label("$A$",A,SW);
label("$M$",M,S);
label("$C$",C,SE);
label("$P$",P,E);
label("$B$",B,NE);
label("$N$",Q,NW);[/asy]$ \textbf{(A)}\ y \equal{} \frac {1}{2}(5 \plus{} 12) \qquad \textbf{(B)}\ y \equal{} \frac {5x}{12} \plus{} \frac {12}{5}\qquad \textbf{(C)}\ y \equal{} \frac {144 \minus{} 7x}{12}\qquad$
$ \textbf{(D)}\ y \equal{} 12\qquad \qquad\quad\,\, \textbf{(E)}\ y \equal{} \frac {5x}{12} \plus{} 6$
1998 AMC 12/AHSME, 10
A large square is divided into a small square surrounded by four congruent rectangles as shown. The perimeter of each of the congruent rectangles is 14. What is the area of the large square?
[asy]unitsize(3mm);
defaultpen(linewidth(.8pt));
draw((0,0)--(7,0)--(7,7)--(0,7)--cycle);
draw((1,0)--(1,6));
draw((7,1)--(1,1));
draw((6,7)--(6,1));
draw((0,6)--(6,6));[/asy]$ \textbf{(A)}\ \ 49 \qquad \textbf{(B)}\ \ 64 \qquad \textbf{(C)}\ \ 100 \qquad \textbf{(D)}\ \ 121 \qquad \textbf{(E)}\ \ 196$
1962 IMO, 3
Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.
2002 Dutch Mathematical Olympiad, 3
$A, B$ and $C$ are points in the plane with integer coordinates.
The lengths of the sides of triangle $ABC$ are integer numbers.
Prove that the perimeter of the triangle is an even number.
2014 Contests, 3
A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square?
[i]Proposed by Evan Chen[/i]
2013 NIMO Problems, 2
Square $\mathcal S$ has vertices $(1,0)$, $(0,1)$, $(-1,0)$ and $(0,-1)$. Points $P$ and $Q$ are independently selected, uniformly at random, from the perimeter of $\mathcal S$. Determine, with proof, the probability that the slope of line $PQ$ is positive.
[i]Proposed by Isabella Grabski[/i]
1991 AIME Problems, 12
Rhombus $PQRS$ is inscribed in rectangle $ABCD$ so that vertices $P$, $Q$, $R$, and $S$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB=15$, $BQ=20$, $PR=30$, and $QS=40$. Let $m/n$, in lowest terms, denote the perimeter of $ABCD$. Find $m+n$.