Found problems: 663
1982 AMC 12/AHSME, 10
In the adjoining diagram, $BO$ bisects $\angle CBA$, $CO$ bisects $\angle ACB$, and $MN$ is parallel to $BC$. If $AB=12$, $BC=24$, and $AC=18$, then the perimeter of $\triangle AMN$ is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0));
draw(B--M--O--B--C--O--N--C^^N--A--M);
label("$A$", A, dir(90));
label("$B$", B, dir(O--B));
label("$C$", C, dir(O--C));
label("$M$", M, dir(90)*dir(B--A));
label("$N$", N, dir(90)*dir(A--C));
label("$O$", O, dir(90));[/asy]
$\textbf {(A) } 30 \qquad \textbf {(B) } 33 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 42$
2017 Purple Comet Problems, 13
Let $ABCDE$ be a pentagon with area $2017$ such that four of its sides $AB, BC, CD$, and $EA$ have integer length. Suppose that $\angle A = \angle B = \angle C = 90^o$, $AB = BC$, and $CD = EA$. The maximum possible perimeter of $ABCDE$ is $a + b \sqrt{c}$, where $a$, $b$, and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a + b + c$.
2014 NIMO Problems, 3
A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square?
[i]Proposed by Evan Chen[/i]
2010 BMO TST, 3
Let $ K$ be the circumscribed circle of the trapezoid $ ABCD$ . In this trapezoid the diagonals $ AC$ and $ BD$ are perpendicular. The parallel sides $ AB\equal{}a$ and $ CD\equal{}c$ are diameters of the circles $ K_{a}$ and $ K_{b}$ respectively. Find the perimeter and the area of the part inside the circle $ K$, that is outside circles $ K_{a}$ and $ K_{b}$.
1986 China Team Selection Test, 2
Given a tetrahedron $ABCD$, $E$, $F$, $G$, are on the respectively on the segments $AB$, $AC$ and $AD$. Prove that:
i) area $EFG \leq$ max{area $ABC$,area $ABD$,area $ACD$,area $BCD$}.
ii) The same as above replacing "area" for "perimeter".
2010 Federal Competition For Advanced Students, Part 1, 4
The the parallel lines through an inner point $P$ of triangle $\triangle ABC$ split the triangle into three parallelograms and three triangles adjacent to the sides of $\triangle ABC$.
(a) Show that if $P$ is the incenter, the perimeter of each of the three small triangles equals the length of the adjacent side.
(b) For a given triangle $\triangle ABC$, determine all inner points $P$ such that the perimeter of each of the three small triangles equals the length of the adjacent side.
(c) For which inner point does the sum of the areas of the three small triangles attain a minimum?
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 4)[/i]
1993 AIME Problems, 14
A rectangle that is inscribed in a larger rectangle (with one vertex on each side) is called [i]unstuck[/i] if it is possible to rotate (however slightly) the smaller rectangle about its center within the confines of the larger. Of all the rectangles that can be inscribed unstuck in a 6 by 8 rectangle, the smallest perimeter has the form $\sqrt{N}$, for a positive integer $N$. Find $N$.
2013 Israel National Olympiad, 1
In the picture there are six coins, each with radius 1cm. Each coin is tangent to exactly two other coins next to it (as in the picture). Between the coins, there is an empty area whose boundary is a star-like shape. What is the perimeter of this shape?
[img]https://i.imgur.com/aguQRVd.png[/img]
2004 National Olympiad First Round, 1
If the circumradius of a regular $n$-gon is $1$ and the ratio of its perimeter over its area is $\dfrac{4\sqrt 3}{3}$, what is $n$?
$
\textbf{(A)}\ 3
\qquad\textbf{(B)}\ 4
\qquad\textbf{(C)}\ 5
\qquad\textbf{(D)}\ 6
\qquad\textbf{(E)}\ 8
$
2003 AIME Problems, 12
In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)
1996 IMO Shortlist, 9
In the plane, consider a point $ X$ and a polygon $ \mathcal{F}$ (which is not necessarily convex). Let $ p$ denote the perimeter of $ \mathcal{F}$, let $ d$ be the sum of the distances from the point $ X$ to the vertices of $ \mathcal{F}$, and let $ h$ be the sum of the distances from the point $ X$ to the sidelines of $ \mathcal{F}$. Prove that $ d^2 \minus{} h^2\geq\frac {p^2}{4}.$
2016 Czech And Slovak Olympiad III A, 5
In the triangle $ABC$, $| BC | = 1$ and there is exactly one point $D$ on the side $BC$ such that $|DA|^2 = |DB| \cdot |DC|$. Determine all possible values of the perimeter of the triangle $ABC$.
1986 India National Olympiad, 9
Show that among all quadrilaterals of a given perimeter the square has the largest area.
2010 Danube Mathematical Olympiad, 3
All sides and diagonals of a convex $n$-gon, $n\ge 3$, are coloured one of two colours. Show that there exist $\left[\frac{n+1}{3}\right]$ pairwise disjoint monochromatic segments.
[i](Two segments are disjoint if they do not share an endpoint or an interior point).[/i]
2011 Morocco National Olympiad, 2
Let $\alpha , \beta ,\gamma$ be the angles of a triangle $ABC$ of perimeter $ 2p $ and $R$ is the radius of its circumscribed circle.
$(a)$ Prove that
\[\cot^{2}\alpha +\cot^{2}\beta+\cot^{2}\gamma\geq 3\left(9\cdot \frac{R^{2}}{p^{2}} - 1\right).\]
$(b)$ When do we have equality?
2006 AMC 8, 6
The letter T is formed by placing two $ 2\times 4$ inch rectangles next to each other, as shown. What is the perimeter of the T, in inches?
[asy]size(150);
draw((0,6)--(4,6)--(4,4)--(3,4)--(3,0)--(1,0)--(1,4)--(0,4)--cycle, linewidth(1));[/asy]
$ \textbf{(A)}\ 12 \qquad
\textbf{(B)}\ 16 \qquad
\textbf{(C)}\ 20 \qquad
\textbf{(D)}\ 22 \qquad
\textbf{(E)}\ 24$
2001 Tournament Of Towns, 2
Let $n\ge3$ be an integer. A circle is divided into $2n$ arcs by $2n$ points. Each arc has one of three possible lengths, and no two adjacent arcs have the same lengths. The $2n$ points are colored alternately red and blue. Prove that the $n$-gon with red vertices and the $n$-gon with blue vertices have the same perimeter and the same area.
2016 Indonesia TST, 2
Given a convex polygon with $n$ sides and perimeter $S$, which has an incircle $\omega$ with radius $R$. A regular polygon with $n$ sides, whose vertices lie on $\omega$, has a perimeter $s$. Determine whether the following inequality holds:
\[ S \ge \frac{2sRn}{\sqrt{4n^2R^2-s^2}}. \]
2015 CCA Math Bonanza, I8
A rectangle has an area of $16$ and a perimeter of $18$; determine the length of the diagonal of the rectangle.
[i]2015 CCA Math Bonanza Individual Round #8[/i]
2003 AIME Problems, 7
Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21$. Point $D$ is not on $\overline{AC}$ so that $AD = CD$, and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s$.
1988 IMO Longlists, 72
Consider $h+1$ chess boards. Number the squares of each board from 1 to 64 in such a way that when the perimeters of any two boards of the collection are brought into coincidence in any possible manner, no two squares in the same position have the same number. What is the maximum value of $h?$
2022 JHMT HS, 8
Let $P = (-4, 0)$ and $Q = (4, 0)$ be two points on the $x$-axis of the Cartesian coordinate plane, and let $X$ and $Y$ be points on the $x$-axis and $y$-axis, respectively, such that over all $Z$ on line $\overleftrightarrow{XY}$, the perimeter of $\triangle ZPQ$ has a minimum value of $25$. What is the smallest possible value of $XY^2$?
2011 AMC 10, 20
Two points on the circumference of a circle of radius r are selected independently and at random. From each point a chord of length r is drawn in a clockwise direction. What is the probability that the two chords intersect?
$ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2} $
2002 AMC 10, 23
Points $ A,B,C$ and $ D$ lie on a line, in that order, with $ AB\equal{}CD$ and $ BC\equal{}12$. Point $ E$ is not on the line, and $ BE\equal{}CE\equal{}10$. The perimeter of $ \triangle AED$ is twice the perimeter of $ \triangle BEC$. Find $ AB$.
$ \text{(A)}\ 15/2 \qquad
\text{(B)}\ 8 \qquad
\text{(C)}\ 17/2 \qquad
\text{(D)}\ 9 \qquad
\text{(E)}\ 19/2$
May Olympiad L1 - geometry, 2013.3
Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the triangle $ PCR$
[img]https://3.bp.blogspot.com/-ZSyCUznwutE/XNY7cz7reQI/AAAAAAAAKLc/XqgQnjm8DQYq6Q7fmCAKJwKt3ihoL8AuQCK4BGAYYCw/s400/may%2B2013%2Bl1.png[/img]