This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 412

2013 Korea Junior Math Olympiad, 2

A pentagon $ABCDE$ is inscribed in a circle $O$, and satis es $AB = BC , AE = DE$. The circle that is tangent to $DE$ at $E$ and passing $A$ hits $EC$ at $F$ and $BF$ at $G (\ne F)$. Let $DG\cap O = H (\ne D)$. Prove that the tangent to $O$ at $E$ is perpendicular to $HA$.

2020 Korea Junior Math Olympiad, 2

Let $ABC$ be an acute triangle with circumcircle $\Omega$ and $\overline{AB} < \overline{AC}$. The angle bisector of $A$ meets $\Omega$ again at $D$, and the line through $D$, perpendicular to $BC$ meets $\Omega$ again at $E$. The circle centered at $A$, passing through $E$ meets the line $DE$ again at $F$. Let $K$ be the circumcircle of triangle $ADF$. Prove that $AK$ is perpendicular to $BC$.

2021 239 Open Mathematical Olympiad, 4

Symedians of an acute-angled non-isosceles triangle $ABC$ intersect at a point at point $L$, and $AA_1$, $BB_1$ and $CC_1$ are its altitudes. Prove that you can construct equilateral triangles $A_1B_1C'$, $B_1C_1A'$ and $C_1A_1B'$ not lying in the plane $ABC$, so that lines $AA' , BB'$ and $CC'$ and also perpendicular to the plane $ABC$ at point $L$ intersected at one point.

2012 District Olympiad, 4

Consider the square $ABCD$ and the point $E$ on the side $AB$. The line $DE$ intersects the line $BC$ at point $F$, and the line $CE$ intersects the line $AF$ at point $G$. Prove that the lines $BG$ and $DF$ are perpendicular.

2019 Tournament Of Towns, 4

Let $OP$ and $OQ$ be the perpendiculars from the circumcenter $O$ of a triangle $ABC$ to the internal and external bisectors of the angle $B$. Prove that the line$ PQ$ divides the segment connecting midpoints of $CB$ and $AB$ into two equal parts. (Artemiy Sokolov)

2001 IMO Shortlist, 4

Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define \[ p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}. \] Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?

2012 Dutch Mathematical Olympiad, 4

We are given an acute triangle $ABC$ and points $D$ on $BC$ and $E$ on $AC$ such that $AD$ is perpendicular to $BC$ and $BE$ is perpendicular to $AC$. The intersection of $AD$ and $BE$ is called $H$. A line through $H$ intersects line segment $BC$ in $P$, and intersects line segment $AC$ in $Q$. Furthermore, $K$ is a point on $BE$ such that $PK$ is perpendicular to $BE$, and $L$ is a point on $AD$ such that $QL$ is perpendicular to $AD$. Prove that $DK$ and $EL$ are parallel. [asy] unitsize(1 cm); pair A, B, C, D, E, H, K, L, P, Q; A = (0,0); B = (6,0); C = (3.5,4); D = (A + reflect(B,C)*(A))/2; E = (B + reflect(A,C)*(B))/2; H = extension(A, D, B, E); P = extension(H, H + dir(-10), B, C); Q = extension(H, H + dir(-10), A, C); K = (P + reflect(B,E)*(P))/2; L = (Q + reflect(A,D)*(Q))/2; draw(A--B--C--cycle); draw(A--D); draw(B--E); draw(K--P--Q--L); draw(rightanglemark(B,D,A,5)); draw(rightanglemark(B,E,A,5)); draw(rightanglemark(P,K,B,5)); draw(rightanglemark(A,L,Q,5)); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$D$", D, NE); dot("$E$", E, NW); dot("$H$", H, N); dot("$K$", K, SW); dot("$L$", L, SE); dot("$P$", P, NE); dot("$Q$", Q, NW); [/asy]

2017 Bundeswettbewerb Mathematik, 3

Let $M$ be the incenter of the tangential quadrilateral $A_1A_2A_3A_4$. Let line $g_1$ through $A_1$ be perpendicular to $A_1M$; define $g_2,g_3$ and $g_4$ similarly. The lines $g_1,g_2,g_3$ and $g_4$ define another quadrilateral $B_1B_2B_3B_4$ having $B_1$ be the intersection of $g_1$ and $g_2$; similarly $B_2,B_3$ and $B_4$ are intersections of $g_2$ and $g_3$, $g_3$ and $g_4$, resp. $g_4$ and $g_1$. Prove that the diagonals of quadrilateral $B_1B_2B_3B_4$ intersect in point $M$. [asy] import graph; size(15cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-9.773972777861085,xmax=12.231603726660566,ymin=-3.9255487671791487,ymax=7.37238601960895; pair M=(2.,2.), A_4=(-1.6391623316400197,1.2875505916864178), A_1=(3.068893183992864,-0.5728665455336459), A_2=(4.30385937824148,2.2922812065339455), A_3=(2.221541124684679,4.978916319940133), B_4=(-0.9482172571022687,-2.24176848577888), B_1=(4.5873184669543345,0.057960746374459436), B_2=(3.9796042717514277,4.848169684238838), B_3=(-2.4295496490492385,5.324816563638236); draw(circle(M,2.),linewidth(0.8)); draw(A_4--A_1,linewidth(0.8)); draw(A_1--A_2,linewidth(0.8)); draw(A_2--A_3,linewidth(0.8)); draw(A_3--A_4,linewidth(0.8)); draw(M--A_3,linewidth(0.8)+dotted); draw(M--A_2,linewidth(0.8)+dotted); draw(M--A_1,linewidth(0.8)+dotted); draw(M--A_4,linewidth(0.8)+dotted); draw((xmin,-0.07436970390935019*xmin+5.144131675605378)--(xmax,-0.07436970390935019*xmax+5.144131675605378),linewidth(0.8)); draw((xmin,-7.882338401302275*xmin+36.2167572574517)--(xmax,-7.882338401302275*xmax+36.2167572574517),linewidth(0.8)); draw((xmin,0.4154483588930812*xmin-1.847833182441644)--(xmax,0.4154483588930812*xmax-1.847833182441644),linewidth(0.8)); draw((xmin,-5.107958950031516*xmin-7.085223310768749)--(xmax,-5.107958950031516*xmax-7.085223310768749),linewidth(0.8)); dot(M,linewidth(3.pt)+ds); label("$M$",(2.0593440948136896,2.0872038897020024),NE*lsf); dot(A_4,linewidth(3.pt)+ds); label("$A_4$",(-2.6355449660387147,1.085078446888477),NE*lsf); dot(A_1,linewidth(3.pt)+ds); label("$A_1$",(3.1575637581709772,-1.2486383377457595),NE*lsf); dot(A_2,linewidth(3.pt)+ds); label("$A_2$",(4.502882845783654,2.30684782237346),NE*lsf); dot(A_3,linewidth(3.pt)+ds); label("$A_3$",(2.169166061149418,5.203402184478307),NE*lsf); label("$g_3$",(-9.691606303109287,5.354407388189934),NE*lsf); label("$g_2$",(3.0889250292111465,6.727181967386543),NE*lsf); label("$g_1$",(-4.763345563793459,-3.4725331560442676),NE*lsf); label("$g_4$",(-2.663000457622647,6.878187171098171),NE*lsf); dot(B_4,linewidth(3.pt)+ds); label("$B_4$",(-1.5647807942653595,-3.0332452907013523),NE*lsf); dot(B_1,linewidth(3.pt)+ds); label("$B_1$",(4.955898456918535,-0.6583452686912173),NE*lsf); dot(B_2,linewidth(3.pt)+ds); label("$B_2$",(4.104778217816637,5.0661247265586455),NE*lsf); dot(B_3,linewidth(3.pt)+ds); label("$B_3$",(-3.4454819677647146,5.656417795613188),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

1982 IMO Longlists, 54

The right triangles $ABC$ and $AB_1C_1$ are similar and have opposite orientation. The right angles are at $C$ and $C_1$, and we also have $ \angle CAB = \angle C_1AB_1$. Let $M$ be the point of intersection of the lines $BC_1$ and $B_1C$. Prove that if the lines $AM$ and $CC_1$ exist, they are perpendicular.

2018 Iranian Geometry Olympiad, 3

Find all possible values of integer $n > 3$ such that there is a convex $n$-gon in which, each diagonal is the perpendicular bisector of at least one other diagonal. Proposed by Mahdi Etesamifard

1996 Singapore Team Selection Test, 1

Let $P$ be a point on the side $AB$ of a square $ABCD$ and $Q$ a point on the side $BC$. Let $H$ be the foot of the perpendicular from $B$ to $PC$. Suppose that $BP = BQ$. Prove that $QH$ is perpendicular to $HD$.

2010 Korea Junior Math Olympiad, 7

Let $ABCD$ be a cyclic convex quadrilateral. Let $E$ be the intersection of lines $AB,CD$. $P$ is the intersection of line passing $B$ and perpendicular to $AC$, and line passing $C$ and perpendicular to $BD$. $Q$ is the intersection of line passing $D$ and perpendicular to $AC$, and line passing $A$ and perpendicular to $BD$. Prove that three points $E, P,Q$ are collinear.

2013 Oral Moscow Geometry Olympiad, 1

In triangle $ABC$ the angle bisector $AK$ is perpendicular on the median is $CL$. Prove that in the triangle $BKL$ also one of angle bisectors are perpendicular to one of the medians.

2015 Germany Team Selection Test, 2

Let $ABC$ be an acute triangle with the circumcircle $k$ and incenter $I$. The perpendicular through $I$ in $CI$ intersects segment $[BC]$ in $U$ and $k$ in $V$. In particular $V$ and $A$ are on different sides of $BC$. The parallel line through $U$ to $AI$ intersects $AV$ in $X$. Prove: If $XI$ and $AI$ are perpendicular to each other, then $XI$ intersects segment $[AC]$ in its midpoint $M$. [i](Notation: $[\cdot]$ denotes the line segment.)[/i]

Durer Math Competition CD Finals - geometry, 2018.C3

Points $A, B, C, D$ are located in the plane as follows: sections $AB$ and $CD$ are perpendicular to each other and are of equal length, moreover, D is just the trisection point of segment $AB$ closer to $A$. The perpendicular from point $D$ on segment $BC$ intersects it at $E$. Let the trisection point of segment $DE$ closer to $E$ be $H$. Prove that segments $CH$ and the sections $AE$ are perpendicular to each other.

2023 Czech-Polish-Slovak Junior Match, 1

Given a triangle $ABC$, $BC = 2 \cdot AC$. Point $M$ is the midpoint of side $ BC$ and point $D$ lies on $AB$, with $AD = 2 \cdot BD$. Prove that the lines $AM$ and $MD$ are perpendicular.

2013 Saudi Arabia Pre-TST, 4.4

$\vartriangle ABC$ is a triangle, $M$ the midpoint of $BC, D$ the projection of $M$ on $AC$ and $E$ the midppoint of $MD$. Prove that the lines $AE,BD$ are orthogonal if and only if $AB = AC$.

2003 Olympic Revenge, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$. $D$ is the midpoint of arc $BC$ (this arc does not contain $A$). $E$ is the common point of $BC$ and the perpendicular bisector of $BD$. $F$ is the common point of $AC$ and the parallel to $AB$ containing $D$. $G$ is the common point of $EF$ and $AB$. $H$ is the common point of $GD$ and $AC$. Show that $GAH$ is isosceles.

2003 Junior Tuymaada Olympiad, 7

Through the point $ K $ lying outside the circle $ \omega $, the tangents are drawn $ KB $ and $ KD $ to this circle ($ B $ and $ D $ are tangency points) and a line intersecting a circle at points $ A $ and $ C $. The bisector of angle $ ABC $ intersects the segment $ AC $ at the point $ E $ and circle $ \omega $ at $ F $. Prove that $ \angle FDE = 90^\circ $.

1991 Tournament Of Towns, (288) 4

A circle is divided by the chord $AB$ into two segments and one of them is rotated about the point $A$ by a certain angle, the point $B$ being taken to $B'$. Prove that the line segments joining the midpoints of the two arcs (i.e. the arc $AB$ which had not been rotated and the rotated arc $AB'$) with the midpoint of $BB'$ are perpendicular. (F. Nazyrov, 11th form student, Obninsk)

Kyiv City MO Juniors Round2 2010+ geometry, 2011.9.4

Let two circles be externally tangent at point $C$, with parallel diameters $A_1A_2, B_1B_2$ (i.e. the quadrilateral $A_1B_1B_2A_2$ is a trapezoid with bases $A_1A_2$ and $B_1B_2$ or parallelogram). Circle with the center on the common internal tangent to these two circles, passes through the intersection point of lines $A_1B_2$ and $A_2B_1$ as well intersects those lines at points $M, N$. Prove that the line $MN$ is perpendicular to the parallel diameters $A_1A_2, B_1B_2$. (Yuri Biletsky)

2010 Oral Moscow Geometry Olympiad, 2

Quadrangle $ABCD$ is inscribed in a circle. The perpendicular from the vertex $C$ on the bisector of $\angle ABD$ intersects the line $AB$ at the point $C_1$. The perpendicular from the vertex $B$ on the bisector of $\angle ACD$ intersects the line $CD$ at the point $B_1$. Prove that $B_1C_1 \parallel AD$.

2010 Saudi Arabia IMO TST, 2

Let $ABCD$ be a convex quadrilateral such that $\angle ABC = \angle ADC =135^o$ and $$AC^2 BD^2=2AB\cdot BC \cdot CD\cdot DA.$$ Prove that the diagonals of $ABCD$ are perpendicular.

1995 Tournament Of Towns, (454) 3

Triangle $ABC$ is inscribed in a circle with center $O$. Let $q$ be the circle passing through $A$, $O$ and $B$. The lines $CA$ and $CB$ intersect $q$ at the points $D$ and $E$ (different from $A$ and $B$). Prove that the lines $CO$ and $DE$ are perpendicular to each other. (S Markelov)

2010 QEDMO 7th, 12

Let $Y$ and $Z$ be the feet of the altitudes of a triangle $ABC$ drawn from angles $B$ and $C$, respectively. Let $U$ and $V$ be the feet of the perpendiculars from $Y$ and $Z$ on the straight line $BC$. The straight lines $YV$ and $ZU$ intersect at a point $L$. Prove that $AL \perp BC$.