This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2019 Oral Moscow Geometry Olympiad, 5

Given the segment $ PQ$ and a circle . A chord $AB$ moves around the circle, equal to $PQ$. Let $T$ be the intersection point of the perpendicular bisectors of the segments $AP$ and $BQ$. Prove that all points of $T$ thus obtained lie on one line.

1989 India National Olympiad, 6

Triangle $ ABC$ has incentre $ I$ and the incircle touches $ BC, CA$ at $ D, E$ respectively. Let $ BI$ meet $ DE$ at $ G$. Show that $ AG$ is perpendicular to $ BG$.

2022 Germany Team Selection Test, 1

Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$. The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$. The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$. The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$. (Yes, these definitions have the symmetries you would expect.) Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.

2011 May Olympiad, 3

In a right triangle rectangle $ABC$ such that $AB = AC$, $M$ is the midpoint of $BC$. Let $P$ be a point on the perpendicular bisector of $AC$, lying in the semi-plane determined by $BC$ that does not contain $A$. Lines $CP$ and $AM$ intersect at $Q$. Calculate the angles that form the lines $AP$ and $BQ$.

2002 IMO, 2

The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$

2019 Mexico National Olympiad, 2

Let $H$ be the orthocenter of acute-angled triangle $ABC$ and $M$ be the midpoint of $AH$. Line $BH$ cuts $AC$ at $D$. Consider point $E$ such that $BC$ is the perpendicular bisector of $DE$. Segments $CM$ and $AE$ intersect at $F$. Show that $BF$ is perpendicular to $CM$. [i]Proposed by Germán Puga[/i]

2005 China Team Selection Test, 3

Find the least positive integer $n$ ($n\geq 3$), such that among any $n$ points (no three are collinear) in the plane, there exist three points which are the vertices of a non-isoscele triangle.

2012 CentroAmerican, 2

Let $\gamma$ be the circumcircle of the acute triangle $ABC$. Let $P$ be the midpoint of the minor arc $BC$. The parallel to $AB$ through $P$ cuts $BC, AC$ and $\gamma$ at points $R,S$ and $T$, respectively. Let $K \equiv AP \cap BT$ and $L \equiv BS \cap AR$. Show that $KL$ passes through the midpoint of $AB$ if and only if $CS = PR$.

2010 All-Russian Olympiad Regional Round, 11.3

Quadrangle $ABCD$ is inscribed in a circle with diameter $AC$. Points $K$ and $M$ are projections of vertices $A$ and $C$, respectively, onto line $BD$. A line parallel to $BC$ is drawn through point $K$ and intersecting $AC$ at point $P$. Prove that angle $KPM$ is a right angle.

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $ABC$ be an isosceles triangle with $AB=AC$. Consider a variable point $P$ on the extension of the segment $BC$ beyound $B$ (in other words, $P$ lies on the line $BC$ such that the point $B$ lies inside the segment $PC$). Let $r_{1}$ be the radius of the incircle of the triangle $APB$, and let $r_{2}$ be the radius of the $P$-excircle of the triangle $APC$. Prove that the sum $r_{1}+r_{2}$ of these two radii remains constant when the point $P$ varies. [i]Remark.[/i] The $P$-excircle of the triangle $APC$ is defined as the circle which touches the side $AC$ and the [i]extensions[/i] of the sides $AP$ and $CP$.

1997 Greece Junior Math Olympiad, 1

Let $ABC$ be an equilateral triangle whose angle bisectors of $B$ and $C$ intersect at $D$. Perpendicular bisectors of $BD$ and $CD$ intersect $BC$ at points $E$ and $Z$ respectively. a) Prove that $BE=EZ=ZC$. b) Find the ratio of the areas of the triangles $BDE$ to $ABC$

2010 Baltic Way, 14

Assume that all angles of a triangle $ABC$ are acute. Let $D$ and $E$ be points on the sides $AC$ and $BC$ of the triangle such that $A, B, D,$ and $E$ lie on the same circle. Further suppose the circle through $D,E,$ and $C$ intersects the side $AB$ in two points $X$ and $Y$. Show that the midpoint of $XY$ is the foot of the altitude from $C$ to $AB$.

Kyiv City MO Seniors 2003+ geometry, 2004.11.2

Given a triangle $ABC$, in which $\angle B> 90^o$. Perpendicular bisector of the side $AB$ intersects the side $AC$ at the point $M$, and the perpendicular bisector of the side $AC$ intersects the extension of the side $AB$ beyond the vertex $B$ at point $N$. It is known that the segments $MN$ and $BC$ are equal and intersect at right angles. Find the values ​​of all angles of triangle $ABC$.

2010 Oral Moscow Geometry Olympiad, 6

Perpendicular bisectors of the sides $BC$ and $AC$ of an acute-angled triangle $ABC$ intersect lines $AC$ and $BC$ at points $M$ and $N$. Let point $C$ move along the circumscribed circle of triangle $ABC$, remaining in the same half-plane relative to $AB$ (while points $A$ and $B$ are fixed). Prove that line $MN$ touches a fixed circle.

2011 IMO Shortlist, 3

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

2018 Taiwan TST Round 3, 1

Let $ABCC_1B_1A_1$ be a convex hexagon such that $AB=BC$, and suppose that the line segments $AA_1, BB_1$, and $CC_1$ have the same perpendicular bisector. Let the diagonals $AC_1$ and $A_1C$ meet at $D$, and denote by $\omega$ the circle $ABC$. Let $\omega$ intersect the circle $A_1BC_1$ again at $E \neq B$. Prove that the lines $BB_1$ and $DE$ intersect on $\omega$.

2019 Korea - Final Round, 2

For a rectangle $ABCD$ which is not a square, there is $O$ such that $O$ is on the perpendicular bisector of $BD$ and $O$ is in the interior of $\triangle BCD$. Denote by $E$ and $F$ the second intersections of the circle centered at $O$ passing through $B, D$ and $AB, AD$. $BF$ and $DE$ meets at $G$, and $X, Y, Z$ are the foots of the perpendiculars from $G$ to $AB, BD, DA$. $L, M, N$ are the foots of the perpendiculars from $O$ to $CD, BD, BC$. $XY$ and $ML$ meets at $P$, $YZ$ and $MN$ meets at $Q$. Prove that $BP$ and $DQ$ are parallel.

1997 IMO, 2

It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU \equal{} TB \plus{} TC$. [i]Alternative formulation:[/i] Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that: (a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$ (b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.

1973 AMC 12/AHSME, 1

A chord which is the perpendicular bisector of a radius of length 12 in a circle, has length $ \textbf{(A)}\ 3\sqrt3 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 6\sqrt3 \qquad \textbf{(D)}\ 12\sqrt3 \qquad \textbf{(E)}\ \text{ none of these}$

JBMO Geometry Collection, 2001

Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$. [i]Bulgaria[/i]

2010 Sharygin Geometry Olympiad, 6

Points $M$ and $N$ lie on the side $BC$ of the regular triangle $ABC$ ($M$ is between $B$ and $N$), and $\angle MAN=30^\circ.$ The circumcircles of triangles $AMC$ and $ANB$ meet at a point $K.$ Prove that the line $AK$ passes through the circumcenter of triangle $AMN.$

2017-2018 SDPC, 3

Let $n > 2$ be a fixed positive integer. For a set $S$ of $n$ points in the plane, let $P(S)$ be the set of perpendicular bisectors of pairs of distinct points in $S$. Call set $S$ [i]complete[/i] if no two (distinct) pairs of points share the same perpendicular bisector, and every pair of lines in $P(S)$ intersects. Let $f(S)$ be the number of distinct intersection points of pairs of lines in $P(S)$. (a) Find all complete sets $S$ such that $f(S) = 1$. (b) Let $S$ be a complete set with $n$ points. Show that if $f(S)>1$, then $f(S) \geq n$.

2007 Singapore Team Selection Test, 1

Two circles $ (O_1)$ and $ (O_2)$ touch externally at the point $C$ and internally at the points $A$ and $B$ respectively with another circle $(O)$. Suppose that the common tangent of $ (O_1)$ and $ (O_2)$ at $C$ meets $(O)$ at $P$ such that $PA=PB$. Prove that $PO$ is perpendicular to $AB$.

2009 Indonesia TST, 2

Two cirlces $ C_1$ and $ C_2$, with center $ O_1$ and $ O_2$ respectively, intersect at $ A$ and $ B$. Let $ O_1$ lies on $ C_2$. A line $ l$ passes through $ O_1$ but does not pass through $ O_2$. Let $ P$ and $ Q$ be the projection of $ A$ and $ B$ respectively on the line $ l$ and let $ M$ be the midpoint of $ \overline{AB}$. Prove that $ MPQ$ is an isoceles triangle.

2004 239 Open Mathematical Olympiad, 7

Given an isosceles triangle $ABC$ (with $AB=BC$). A point $X$ is chosen on a side $AC$. Some circle passes through $X$, touches the side $AC$ and intersects the circumcircle of triangle $ABC$ in points $M$ and $N$ such that the segment $MN$ bisects $BX$ and intersects sides $AB$ and $BC$ in points $P$ and $Q$. Prove that the circumcircle of triangle $PBQ$ passes through the circumcentre of triangle $ABC$. [b]proposed by Sergej Berlov[/b]