This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2014 Postal Coaching, 4

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2013 ELMO Shortlist, 4

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$. [i]Proposed by Evan Chen[/i]

2025 6th Memorial "Aleksandar Blazhevski-Cane", P2

Let $\triangle ABC$ be a scalene and acute triangle in which the angle at $A$ is second largest, $H$ is the orthocenter, and $k$ is the circumcircle with center $O$. Let the circumcircle of $\triangle AHO$ intersect the sides $AB$ and $AC$ again at $M$ and $N$, respectively, whereas the altitudes $CH$ and $BH$ intersect $k$ again at $K$ and $L$, respectively. Prove that the intersection of $KL$ and the perpendicular bisector of $AH$ is the orthocenter of $\triangle AMN$. Proposed by [i]Ilija Jovcevski[/i]

2012 Brazil Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

2002 Iran MO (3rd Round), 5

$\omega$ is circumcirlce of triangle $ABC$. We draw a line parallel to $BC$ that intersects $AB,AC$ at $E,F$ and intersects $\omega$ at $U,V$. Assume that $M$ is midpoint of $BC$. Let $\omega'$ be circumcircle of $UMV$. We know that $R(ABC)=R(UMV)$. $ME$ and $\omega'$ intersect at $T$, and $FT$ intersects $\omega'$ at $S$. Prove that $EF$ is tangent to circumcircle of $MCS$.

2011 International Zhautykov Olympiad, 1

Given is trapezoid $ABCD$, $M$ and $N$ being the midpoints of the bases of $AD$ and $BC$, respectively. a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment $MN$. b) Does the statement of point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line $MN$?

2024 Belarusian National Olympiad, 11.3

In a triangle $ABC$ point $I$ is the incenter, $I_A$ - excenter, $W$ - midpoint of the arc $BAC$ of circumcircle $\omega$ of $ABC$. Point $H$ is the projection of $I_A$ on $IW$. The tangent line to the circumcircle $BIC$ in point $I$ intersects $\omega$ in $E, F$. Prove that the perpendicular bisector to $AI$ is tangent to the circumcircle $EFH$ [i]M. Zorka[/i]

2010 AMC 10, 19

A circle with center $ O$ has area $ 156\pi$. Triangle $ ABC$ is equilateral, $ \overline{BC}$ is a chord on the circle, $ OA \equal{} 4\sqrt3$, and point $ O$ is outside $ \triangle ABC$. What is the side length of $ \triangle ABC$? $ \textbf{(A)}\ 2\sqrt3 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 4\sqrt3 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 18$

2016 Sharygin Geometry Olympiad, 7

Diagonals of a quadrilateral $ABCD$ are equal and meet at point $O$. The perpendicular bisectors to segments $AB$ and $CD$ meet at point $P$, and the perpendicular bisectors to $BC$ and $AD$ meet at point $Q$. Find angle $\angle POQ$. by A.Zaslavsky

2008 Gheorghe Vranceanu, 2

Let $ D$ be an interior point of the side $ BC$ of a triangle $ ABC$, and let $ O_1$ and $ O_2$ be the circumcenters of triangles $ ABD$ and $ ADC$. The perpendicular bisector of the side $ AC$ meets the line $ AO_1$ at $ E$, and the perpendicular bisector of the side $ AB$ meets the line $ AO_2$ at $ F$. Prove that the bisectors of the angles $ \angle O_1EO_2$ and $ \angle O_1FO_2$ are orthogonal.

2011 Mexico National Olympiad, 2

Let $ABC$ be an acute triangle and $\Gamma$ its circumcircle. Let $l$ be the line tangent to $\Gamma$ at $A$. Let $D$ and $E$ be the intersections of the circumference with center $B$ and radius $AB$ with lines $l$ and $AC$, respectively. Prove the orthocenter of $ABC$ lies on line $DE$.

2011 China Team Selection Test, 2

Let $S$ be a set of $n$ points in the plane such that no four points are collinear. Let $\{d_1,d_2,\cdots ,d_k\}$ be the set of distances between pairs of distinct points in $S$, and let $m_i$ be the multiplicity of $d_i$, i.e. the number of unordered pairs $\{P,Q\}\subseteq S$ with $|PQ|=d_i$. Prove that $\sum_{i=1}^k m_i^2\leq n^3-n^2$.

2019 Moldova EGMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC$. Point $M{}$ from the side $(BC)$ is the foot of the bisector from the vertex $A{}$. The perpendicular bisector of the segment $[AM]$ intersects the side $(AC)$ in $E{}$, the side $(AB)$ in $D$ and the line $(BC)$ in $F{}$. Prove that $\frac{DB}{CE}=\frac{FB}{FC}=\left(\frac{AB}{AC}\right)^2$.

2003 AIME Problems, 7

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21$. Point $D$ is not on $\overline{AC}$ so that $AD = CD$, and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s$.

2013 ELMO Shortlist, 4

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$. [i]Proposed by Evan Chen[/i]

1994 APMO, 2

Given a nondegenerate triangle $ABC$, with circumcentre $O$, orthocentre $H$, and circumradius $R$, prove that $|OH| < 3R$.

2014 Spain Mathematical Olympiad, 3

Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.

2014 Peru IMO TST, 3

Let $ABC$ be an acuteangled triangle with $AB> BC$ inscribed in a circle. The perpendicular bisector of the side $AC$ cuts arc $AC,$ containing $B,$ in $Q.$ Let $M$ be a point on the segment $AB$ such that $AM = MB + BC.$ Prove that the circumcircle of the triangle $BMC$ cuts $BQ$ in its midpoint.

2021 All-Russian Olympiad, 6

In tetrahedron $ABCS$ no two edges have equal length. Point $A'$ in plane $BCS$ is symmetric to $S$ with respect to the perpendicular bisector of $BC$. Points $B'$ and $C'$ are defined analagously. Prove that planes $ABC, AB'C', A'BC'$ abd $A'B'C$ share a common point.

2020 OMMock - Mexico National Olympiad Mock Exam, 4

Let $ABC$ be a triangle. Suppose that the perpendicular bisector of $BC$ meets the circle of diameter $AB$ at a point $D$ at the opposite side of $BC$ with respect to $A$, and meets the circle through $A, C, D$ again at $E$. Prove that $\angle ACE=\angle BCD$. [i]Proposed by José Manuel Guerra and Victor Domínguez[/i]

2001 Pan African, 3

Let $S_1$ be a semicircle with centre $O$ and diameter $AB$.A circle $C_1$ with centre $P$ is drawn, tangent to $S_1$, and tangent to $AB$ at $O$. A semicircle $S_2$ is drawn, with centre $Q$ on $AB$, tangent to $S_1$ and to $C_1$. A circle $C_2$ with centre $R$ is drawn, internally tangent to $S_1$ and externally tangent to $S_2$ and $C_1$. Prove that $OPRQ$ is a rectangle.

2001 Poland - Second Round, 2

In a triangle $ABC$, $I$ is the incentre and $D$ the intersection point of $AI$ and $BC$. Show that $AI+CD=AC$ if and only if $\angle B=60^{\circ}+\frac{_1}{^3}\angle C$.

2014 Korea - Final Round, 4

Let $ ABC $ be a isosceles triangle with $ AC=BC$. Let $ D $ a point on a line $ BA $ such that $ A $ lies between $ B, D $. Let $O_1 $ be the circumcircle of triangle $ DAC $. $ O_1 $ meets $ BC $ at point $ E $. Let $ F $ be the point on $ BC $ such that $ FD $ is tangent to circle $O_1 $, and let $O_2 $ be the circumcircle of $ DBF$. Two circles $O_1 , O_2 $ meet at point $ G ( \ne D) $. Let $ O $ be the circumcenter of triangle $ BEG$. Prove that the line $FG$ is tangent to circle $O$ if and only if $ DG \bot FO$.

2009 India Regional Mathematical Olympiad, 1

Let $ ABC$ be a triangle in which $ AB \equal{} AC$ and let $ I$ be its in-centre. Suppose $ BC \equal{} AB \plus{} AI$. Find $ \angle{BAC}$

2011 Akdeniz University MO, 5

Let $ABC$ be an acute-angled triangle with $H$ orthocenter, $O$ circumcenter. $[AH]$'s perpendicular bisector intersects with $[AB]$ and $[AC]$ at $D$ and $E$ respectively. Prove that $$\angle ADE =\angle BDO$$