This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 23

Russian TST 2017, P3

Let $K=(V, E)$ be a finite, simple, complete graph. Let $\phi: E \to \mathbb{R}^2$ be a map from the edge set to the plane, such that the preimage of any point in the range defines a connected graph on the entire vertex set $V$, and the points assigned to the edges of any triangle are collinear. Show that the range of $\phi$ is contained in a line.

2019 USA TSTST, 8

Let $\mathcal S$ be a set of $16$ points in the plane, no three collinear. Let $\chi(S)$ denote the number of ways to draw $8$ lines with endpoints in $\mathcal S$, such that no two drawn segments intersect, even at endpoints. Find the smallest possible value of $\chi(\mathcal S)$ across all such $\mathcal S$. [i]Ankan Bhattacharya[/i]

2018 Poland - Second Round, 3

Bisector of side $BC$ intersects circumcircle of triangle $ABC$ in points $P$ and $Q$. Points $A$ and $P$ lie on the same side of line $BC$. Point $R$ is an orthogonal projection of point $P$ on line $AC$. Point $S$ is middle of line segment $AQ$. Show that points $A, B, R, S$ lie on one circle.

1998 Akdeniz University MO, 2

We have $1998$ polygon such that sum of the areas is $1997,5$ $cm^2$. These polygons placing inside a square with side lenght $1$ $cm$. (Polygons no overflow). Prove that we can find a point such that, all polygons have this point.

2018 Polish Junior MO Finals, 2

Let $ABCD$ be a trapezium with bases $AB$ and $CD$ in which $AB + CD = AD$. Diagonals $AC$ and $BD$ intersect in point $E$. Line passing through point $E$ and parallel to bases of trapezium cuts $AD$ in point $F$. Prove that $\sphericalangle BFC = 90 ^{\circ}$.

2018 Polish Junior MO Second Round, 4

Let $ABCD$ be a trapezoid with bases $AB$ and $CD$. Points $P$ and $Q$ lie on diagonals $AC$ and $BD$, respectively and $\angle APD = \angle BQC$. Prove that $\angle AQD = \angle BPC$.

1988 Brazil National Olympiad, 4

Two triangles are circumscribed to a circumference. Show that if a circumference containing five of their vertices exists, then it will contain the sixth vertex too.

2019 Azerbaijan Senior NMO, 4

Is it possible to construct a equilateral triangle such that: $\text{a)}$ Coordinates of this triangle are integers in two dimensional plane? $\text{b)}$ Coordinates of this triangle are integers in three dimensional plane?

2007 Alexandru Myller, 2

$ n $ lines meet at a point. Each one of the $ 2n $ disjoint angles formed around this point by these lines has either $ 7^{\circ} $ or $ 17^{\circ} . $ [b]a)[/b] Find $ n. $ [b]b)[/b] Prove that among these lines there are at least two perpendicular ones.

2018 Polish Junior MO Finals, 5

Point $M$ is middle of side $AB$ of equilateral triangle $ABC$. Points $D$ and $E$ lie on segments $AC$ and $BC$, respectively and $\angle DME = 60 ^{\circ}$. Prove that, $AD + BE = DE + \frac{1}{2}AB$.

2018 Poland - Second Round, 4

Let $ABCD$ be a trapezoid with bases $AB$ and $CD$. Circle of diameter $BC$ is tangent to line $AD$. Prove, that circle of diameter $AD$ is tangent to line $BC$.

1996 Akdeniz University MO, 5

Two circles centered $O_1,O_2$ intersects at two points $M$ and $N$. $O_1M$ line intersects with $O_1$ centered circle and $O_2$ centered circle at $A_1$ and $A_2$, $O_2M$ line intersects with $O_1$ centered circle and $O_2$ centered circle at $B_1$ and $B_2$ respectively. Let $K$ is intersection point of the $A_1B_1$ and $A_2B_2$. Prove that $N,M,K$ collinear.

2010 Belarus Team Selection Test, 1.2

Points $H$ and $T$ are marked respectively on the sides $BC$ abd $AC$ of triangle $ABC$ so that $AH$ is the altitude and $BT$ is the bisectrix $ABC$. It is known that the gravity center of $ABC$ lies on the line $HT$. a) Find $AC$ if $BC$=a nad $AB$=c. b) Determine all possible values of $\frac{c}{b}$ for all triangles $ABC$ satisfying the given condition.

1988 Brazil National Olympiad, 2

Show that, among all triangles whose vertices are at distances 3,5,7 respectively from a given point P, the ones with largest area have P as orthocenter. ([i]You can suppose, without demonstration, the existence of a triangle with maximal area in this question.[/i])

2004 Spain Mathematical Olympiad, Problem 2

${ABCD}$ is a quadrilateral, ${P}$ and ${Q}$ are midpoints of the diagonals ${BD}$ and ${AC}$, respectively. The lines parallel to the diagonals originating from ${P}$ and ${Q}$ intersect in the point ${O}$. If we join the four midpoints of the sides, ${X}$, ${Y}$, ${Z}$, and ${T}$, to ${O}$, we form four quadrilaterals: ${OXBY}$, ${OYCZ}$, ${OZDT}$, and ${OTAX}$. Prove that the four newly formed quadrilaterals have the same areas.

2012 International Zhautykov Olympiad, 1

An acute triangle $ABC$ is given. Let $D$ be an arbitrary inner point of the side $AB$. Let $M$ and $N$ be the feet of the perpendiculars from $D$ to $BC$ and $AC$, respectively. Let $H_1$ and $H_2$ be the orthocentres of triangles $MNC$ and $MND$, respectively. Prove that the area of the quadrilateral $AH_1BH_2$ does not depend on the position of $D$ on $AB$.

2011 Akdeniz University MO, 2

Let $O$ is a point in a plane $P$ and let $[OX,[OY,[OZ$ is distinct ray in $P$. Prove that, if $A \in [OX$ , $B \in [OY$ and $C \in [OZ$ points such that $\triangle OAB$ , $\triangle OBC$ and $\triangle OCA$ 's perimeter is 2, there is only one $(A,B,C)$ triple

2018 Polish Junior MO Second Round, 2

Let $ABC$ be an acute traingle with $AC \neq BC$. Point $K$ is a foot of altitude through vertex $C$. Point $O$ is a circumcenter of $ABC$. Prove that areas of quadrilaterals $AKOC$ and $BKOC$ are equal.

2017 Kürschák Competition, 1

Let $ABC$ be a triangle. Choose points $A'$, $B'$ and $C'$ independently on side segments $BC$, $CA$ and $AB$ respectively with a uniform distribution. For a point $Z$ in the plane, let $p(Z)$ denote the probability that $Z$ is contained in the triangle enclosed by lines $AA'$, $BB'$ and $CC'$. For which interior point $Z$ in triangle $ABC$ is $p(Z)$ maximised?

2020 Yasinsky Geometry Olympiad, 6

A cube whose edge is $1$ is intersected by a plane that does not pass through any of its vertices, and its edges intersect only at points that are the midpoints of these edges. Find the area of the formed section. Consider all possible cases. (Alexander Shkolny)

2017 India National Olympiad, 1

In the given figure, $ABCD$ is a square sheet of paper. It is folded along $EF$ such that $A$ goes to a point $A'$ different from $B$ and $C$, on the side $BC$ and $D$ goes to $D'$. The line $A'D'$ cuts $CD$ in $G$. Show that the inradius of the triangle $GCA'$ is the sum of the inradii of the triangles $GD'F$ and $A'BE$. [asy] size(5cm); pair A=(0,0),B=(1,0),C=(1,1),D=(0,1),Ap=(1,0.333),Dp,Ee,F,G; Ee=extension(A,B,(A+Ap)/2,bisectorpoint(A,Ap)); F=extension(C,D,(A+Ap)/2,bisectorpoint(A,Ap)); Dp=reflect(Ee,F)*D; G=extension(C,D,Ap,Dp); D(MP("A",A,W)--MP("E",Ee,S)--MP("B",B,E)--MP("A^{\prime}",Ap,E)--MP("C",C,E)--MP("G",G,NE)--MP("D^{\prime}",Dp,N)--MP("F",F,NNW)--MP("D",D,W)--cycle,black); draw(Ee--Ap--G--F); dot(A);dot(B);dot(C);dot(D);dot(Ap);dot(Dp);dot(Ee);dot(F);dot(G); draw(Ee--F,dashed); [/asy]

2019 Korea Junior Math Olympiad., 7

Let $O$ be the circumcenter of an acute triangle $ABC$. Let $D$ be the intersection of the bisector of the angle $A$ and $BC$. Suppose that $\angle ODC = 2 \angle DAO$. The circumcircle of $ABD$ meets the line segment $OA$ and the line $OD$ at $E (\neq A,O)$, and $F(\neq D)$, respectively. Let $X$ be the intersection of the line $DE$ and the line segment $AC$. Let $Y$ be the intersection of the bisector of the angle $BAF$ and the segment $BE$. Prove that $\frac{\overline{AY}}{\overline{BY}}= \frac{\overline{EX}}{\overline{EO}}$.

2002 Spain Mathematical Olympiad, Problem 5

Consider $2002$ segments on a plane, such that their lengths are the same. Prove that there exists such a straight line $r$ such that the sum of the lengths of the projections of the $2002$ segments about $r$ is less than $\frac{2}{3}$.