This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2007 QEDMO 4th, 5

Let $ ABC$ be a triangle, and let $ X$, $ Y$, $ Z$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Denote by $ X^{\prime}$, $ Y^{\prime}$, $ Z^{\prime}$ the reflections of these points $ X$, $ Y$, $ Z$ in the midpoints of the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \left\vert XYZ\right\vert \equal{}\left\vert X^{\prime}Y^{\prime}Z^{\prime}\right\vert$.

2002 AMC 12/AHSME, 9

Two walls and the ceiling of a room meet at right angles at point $P$. A fly is in the air one meter from one wall, eight meters from the other wall, and $9$ meters from point $P$. How many meters is the fly from the ceiling? $\textbf{(A) }\sqrt{13}\qquad\textbf{(B) }\sqrt{14}\qquad\textbf{(C) }\sqrt{15}\qquad\textbf{(D) }4\qquad\textbf{(E) }\sqrt{17}$

2012 Putnam, 2

Let $P$ be a given (non-degenerate) polyhedron. Prove that there is a constant $c(P)>0$ with the following property: If a collection of $n$ balls whose volumes sum to $V$ contains the entire surface of $P,$ then $n>c(P)/V^2.$

1990 AMC 8, 18

Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have? [asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3)); draw((3,3)--(5,5)); draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1)); draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1));[/asy] $ \text{(A)}\ 24\qquad\text{(B)}\ 30\qquad\text{(C)}\ 36\qquad\text{(D)}\ 42\qquad\text{(E)}\ 48 $ [i]Assume that the planes cutting the prism do not intersect anywhere in or on the prism.[/i]

2016 Oral Moscow Geometry Olympiad, 4

In a convex $n$-gonal prism all sides are equal. For what $n$ is this prism right?

2009 District Olympiad, 3

Consider the regular quadrilateral prism $ABCDA'B'C 'D'$, in which $AB = a,AA' = \frac{a \sqrt {2}}{2}$, and $M$ is the midpoint of $B' C'$. Let $F$ be the foot of the perpendicular from $B$ on line $MC$, Let determine the measure of the angle between the planes $(BDF)$ and $(HBS)$.

1981 All Soviet Union Mathematical Olympiad, 326

The segments $[AD], [BE]$ and $[CF]$ are the side edges of the right triangle prism. (the equilateral triangle is a base) Find all the points in its base $ABC$, situated on the equal distances from the $(AE), (BF)$ and $(CD)$ lines.

1955 Czech and Slovak Olympiad III A, 2

Let $\mathsf{S}_1,\mathsf{S}_2$ be concentric spheres with radii $a,b$ respectively, where $a<b.$ Denote $ABCDA'B'C'D'$ a square cuboid ($ABCD,A'B'C'D$ are the squares and $AA'\parallel BB'\parallel CC'\parallel DD'$) such that $A,B,C,D\in\mathsf{S}_2$ and the plane $A'B'C'D'$ is tangent to $\mathsf{S}_1.$ Finally assume that \[\frac{AB}{AA'}=\frac ab.\] Compute the lengths $AB,AA'.$ How many of such cuboids exist (up to a congruence)?

2017 CCA Math Bonanza, I11

$480$ $1$ cm unit cubes are used to build a block measuring $6$ cm by $8$ cm by $10$ cm. A tiny ant then chews his way in a straight line from one vertex of the block to the furthest vertex. How many cubes does the ant pass through? The ant is so tiny that he does not "pass through" cubes if he is merely passing through where their edges or vertices meet. [i]2017 CCA Math Bonanza Individual Round #11[/i]

2012 National Olympiad First Round, 33

Let $ABCDA'B'C'D'$ be a rectangular prism with $|AB|=2|BC|$. $E$ is a point on the edge $[BB']$ satisfying $|EB'|=6|EB|$. Let $F$ and $F'$ be the feet of the perpendiculars from $E$ at $\triangle AEC$ and $\triangle A'EC'$, respectively. If $m(\widehat{FEF'})=60^{\circ}$, then $|BC|/|BE| = ? $ $ \textbf{(A)}\ \sqrt\frac53 \qquad \textbf{(B)}\ \sqrt\frac{15}2 \qquad \textbf{(C)}\ \frac32\sqrt{15} \qquad \textbf{(D)}\ 5\sqrt\frac53 \qquad \textbf{(E)}\ \text{None}$

2010 Princeton University Math Competition, 5

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

1979 IMO Shortlist, 4

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2005 AMC 12/AHSME, 17

A unit cube is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex $ W$? [asy]import three; size(200); defaultpen(linewidth(.8pt)+fontsize(10pt)); currentprojection=oblique; path3 p1=(0,2,2)--(0,2,0)--(2,2,0)--(2,2,2)--(0,2,2)--(0,0,2)--(2,0,2)--(2,2,2); path3 p2=(2,2,0)--(2,0,0)--(2,0,2); path3 p3=(0,0,2)--(0,2,1)--(2,2,1)--(2,0,2); path3 p4=(2,2,1)--(2,0,0); pen finedashed=linetype("4 4"); draw(p1^^p2^^p3^^p4); draw(shift((4,0,0))*p1); draw(shift((4,0,0))*p2); draw(shift((4,0,0))*p3); draw(shift((4,0,0))*p4); draw((4,0,2)--(5,2,2)--(6,0,2),finedashed); draw((5,2,2)--(5,2,0)--(6,0,0),finedashed); label("$W$",(3,0,2)); draw((2.7,.3,2)--(2.1,1.9,2),linewidth(.6pt)); draw((3.4,.3,2)--(5.9,1.9,2),linewidth(.6pt)); label("Figure 1",(1,-0.5,2)); label("Figure 2",(5,-0.5,2));[/asy]$ \textbf{(A)}\ \frac {1}{12}\qquad \textbf{(B)}\ \frac {1}{9}\qquad \textbf{(C)}\ \frac {1}{8}\qquad \textbf{(D)}\ \frac {1}{6}\qquad \textbf{(E)}\ \frac {1}{4}$

2017 Romania National Olympiad, 1

Prove the following: a) If $ABCA'B'C'$ is a right prism and $M \in (BC), N \in (CA), P \in (AB)$ such that $A'M, B'N$ and $C'P$ are perpendicular each other and concurrent, then the prism $ABCA'B'C'$ is regular. b) If $ABCA'B'C'$ is a regular prism and $\frac{AA'}{AB}=\frac{\sqrt6}{4}$ , then there are $M \in (BC), N \in (CA), P \in (AB)$ so that the lines $A'M, B'N$ and $C'P$ are perpendicular each other and concurrent.

2000 Turkey Team Selection Test, 1

Show that any triangular prism of infinite length can be cut by a plane such that the resulting intersection is an equilateral triangle.

2002 AMC 12/AHSME, 24

Let $ABCD$ be a regular tetrahedron and let $E$ be a point inside the face $ABC$. Denote by $s$ the sum of the distances from $E$ to the faces $DAB$, $DBC$, $DCA$, and by $S$ the sum of the distances from $E$ to the edges $AB$, $BC$, $CA$. Then $\dfrac sS$ equals $\textbf{(A) }\sqrt2\qquad\textbf{(B) }\dfrac{2\sqrt2}3\qquad\textbf{(C) }\dfrac{\sqrt6}2\qquad\textbf{(D) }2\qquad\textbf{(E) }3$

1987 Brazil National Olympiad, 5

Tags: geometry , prism , maximum
$A$ and $B$ wish to divide a cake into two pieces. Each wants the largest piece he can get. The cake is a triangular prism with the triangular faces horizontal. $A$ chooses a point $P$ on the top face. $B$ then chooses a vertical plane through the point $P$ to divide the cake. $B$ chooses which piece to take. Which point $P$ should $A $ choose in order to secure as large a slice as possible?

2002 Belarusian National Olympiad, 4

This requires some imagination and creative thinking: Prove or disprove: There exists a solid such that, for all positive integers $n$ with $n \geq 3$, there exists a "parallel projection" (I hope the terminology is clear) such that the image of the solid under this projection is a convex $n$-gon.

2002 May Olympiad, 1

Using white cubes of side $1$, a prism (without holes) was assembled. The faces of the prism were painted black. It is known that the cubes left with exactly $4$ white faces are $20$ in total. Determine what the dimensions of the prism can be. Give all the possibilities.

1974 Chisinau City MO, 80

Each side face of a regular hexagonal prism is colored in one of three colors (for example, red, yellow, blue), and the adjacent prism faces have different colors. In how many different ways can the edges of the prism be colored (using all three colors is optional)?

2010 Princeton University Math Competition, 7

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

2012 AMC 12/AHSME, 22

Distinct planes $p_1,p_2,....,p_k$ intersect the interior of a cube $Q$. Let $S$ be the union of the faces of $Q$ and let $ P =\bigcup_{j=1}^{k}p_{j} $. The intersection of $P$ and $S$ consists of the union of all segments joining the midpoints of every pair of edges belonging to the same face of $Q$. What is the difference between the maximum and minimum possible values of $k$? $ \textbf{(A)}\ 8\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 23\qquad\textbf{(E)}\ 24 $

2020 Polish Junior MO First Round, 7.

Consider the right prism with the rhombus with side $a$ and acute angle $60^{\circ}$ as a base. This prism was intersected by some plane intersecting its side edges, such that the cross-section of the prism and the plane is a square. Determine all possible lengths of the side of this square.

2000 Tournament Of Towns, 3

In each lateral face of a pentagonal prism at least one of the four angles is equal to $f$. Find all possible values of $f$. (A Shapovalov)

1962 Miklós Schweitzer, 9

Find the minimum possible sum of lengths of edges of a prism all of whose edges are tangent of a unit sphere. [Muller-Pfeiffer].