Found problems: 1111
2008 AMC 8, 24
Ten tiles numbered $1$ through $10$ are turned face down. One tile is turned up at random, and a die is rolled. What is the probability that the product of the numbers on the tile and the die will be a square?
$\textbf{(A)}\ \frac{1}{10}\qquad
\textbf{(B)}\ \frac{1}{6}\qquad
\textbf{(C)}\ \frac{11}{60}\qquad
\textbf{(D)}\ \frac{1}{5}\qquad
\textbf{(E)}\ \frac{7}{30}$
2018 HMNT, 1
Four standard six-sided dice are rolled. Find the probability that, for each pair of dice, the product of the two numbers rolled on those dice is a multiple of 4.
2014 NIMO Summer Contest, 10
Among $100$ points in the plane, no three collinear, exactly $4026$ pairs are connected by line segments. Each point is then randomly assigned an integer from $1$ to $100$ inclusive, each equally likely, such that no integer appears more than once. Find the expected value of the number of segments which join two points whose labels differ by at least $50$.
[i]Proposed by Evan Chen[/i]
2005 AMC 12/AHSME, 23
Two distinct numbers $ a$ and $ b$ are chosen randomly from the set $ \{ 2, 2^2, 2^3, \ldots, 2^{25} \}$. What is the probability that $ \log_{a} b$ is an integer?
$ \textbf{(A)}\ \frac {2}{25} \qquad \textbf{(B)}\ \frac {31}{300} \qquad \textbf{(C)}\ \frac {13}{100} \qquad \textbf{(D)}\ \frac {7}{50} \qquad \textbf{(E)}\ \frac {1}{2}$
2014 Putnam, 4
Suppose $X$ is a random variable that takes on only nonnegative integer values, with $E[X]=1,$ $E[X^2]=2,$ and $E[X^3]=5.$ (Here $E[Y]$ denotes the expectation of the random variable $Y.$) Determine the smallest possible value of the probability of the event $X=0.$
1989 AMC 12/AHSME, 10
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2022 CCA Math Bonanza, T8
Let n be a set of integers. $S(n)$ is defined as the sum of the elements of n. $T=\{1,2,3,4,5,6,7,8,9\}$ and A and B are subsets of T such that A $\cup$ $B=T$ and A $\cap$ $B=\varnothing$. The probability that $S(A)\geq4S(B)$ can be expressed as $\frac{p}{q}$. Compute $p+q$.
[i]2022 CCA Math Bonanza Team Round #8[/i]
2006 Pre-Preparation Course Examination, 1
Suppose that $X$ is a compact metric space and $T: X\rightarrow X$ is a continous function. Prove that $T$ has a returning point. It means there is a strictly increasing sequence $n_i$ such that $\lim_{k\rightarrow \infty} T^{n_k}(x_0)=x_0$ for some $x_0$.
2024 Bulgarian Autumn Math Competition, 12.4
Let $L$ be a figure made of $3$ squares, a right isosceles triangle and a quarter circle (all unit sized) as shown below: [img]https://wiki-images.artofproblemsolving.com//f/f9/Weirwiueripo.png[/img]
Prove that any $18$ points in the plane can be covered with copies of $L$, which don't overlap (copies of $L$ may be rotated or flipped)
2014 Online Math Open Problems, 15
In Prime Land, there are seven major cities, labelled $C_0$, $C_1$, \dots, $C_6$. For convenience, we let $C_{n+7} = C_n$ for each $n=0,1,\dots,6$; i.e. we take the indices modulo $7$. Al initially starts at city $C_0$.
Each minute for ten minutes, Al flips a fair coin. If the coin land heads, and he is at city $C_k$, he moves to city $C_{2k}$; otherwise he moves to city $C_{2k+1}$. If the probability that Al is back at city $C_0$ after $10$ moves is $\tfrac{m}{1024}$, find $m$.
[i]Proposed by Ray Li[/i]
1999 Romania Team Selection Test, 16
Let $X$ be a set with $n$ elements, and let $A_{1}$, $A_{2}$, ..., $A_{m}$ be subsets of $X$ such that:
1) $|A_{i}|=3$ for every $i\in\left\{1,2,...,m\right\}$;
2) $|A_{i}\cap A_{j}|\leq 1$ for all $i,j\in\left\{1,2,...,m\right\}$ such that $i \neq j$.
Prove that there exists a subset $A$ of $X$ such that $A$ has at least $\left[\sqrt{2n}\right]$ elements, and for every $i\in\left\{1,2,...,m\right\}$, the set $A$ does not contain $A_{i}$.
[i]Alternative formulation.[/i] Let $X$ be a finite set with $n$ elements and $A_{1},A_{2},\ldots, A_{m}$ be three-elements subsets of $X$, such that $|A_{i}\cap A_{j}|\leq 1$, for every $i\neq j$. Prove that there exists $A\subseteq X$ with $|A|\geq \lfloor \sqrt{2n}\rfloor$, such that none of $A_{i}$'s is a subset of $A$.
2016 PUMaC Combinatorics A, 4
A knight is placed at the origin of the Cartesian plane. Each turn, the knight moves in an chess $\text{L}$-shape ($2$ units parallel to one axis and $1$ unit parallel to the other) to one of eight possible location, chosen at random. After $2016$ such turns, what is the expected value of the square of the distance of the knight from the origin?
2007 Purple Comet Problems, 8
You know that the Jones family has five children, and the Smith family has three children. Of the eight children you know that there are five girls and three boys. Let $\dfrac{m}{n}$ be the probability that at least one of the families has only girls for children. Given that $m$ and $n$ are relatively prime positive integers, find $m+ n$.
1983 Poland - Second Round, 6
For a given number $ n $, let us denote by $ p_n $ the probability that when randomly selecting a pair of integers $ k, m $ satisfying the conditions $ 0 \leq k \leq m \leq 2^n $ (the selection of each pair is equally probable) the number $\binom{m}{k}$ will be even. Calculate $ \lim_{n\to \infty} p_n $.
2000 Stanford Mathematics Tournament, 6
Three cards, only one of which is an ace, are placed face down on a table. You select one, but do not look at it. The dealer turns over one of the other cards, which is not the ace (if neither are, he picks one of them randomly to turn over). You get a chance to change your choice and pick either of the remaining two face-down cards. If you selected the cards so as to maximize the chance of finding the ace on the second try, what is the probability that you selected it on the
(a) first try?
(b) second try?
2010 Today's Calculation Of Integral, 568
Throw $ n$ balls in to $ 2n$ boxes. Suppose each ball comes into each box with equal probability of entering in any boxes.
Let $ p_n$ be the probability such that any box has ball less than or equal to one. Find the limit $ \lim_{n\to\infty} \frac{\ln p_n}{n}$
2018 Harvard-MIT Mathematics Tournament, 8
Crisp All, a basketball player, is [i]dropping dimes[/i] and nickels on a number line. Crisp drops a dime on every positive multiple of $10$, and a nickel on every multiple of $5$ that is not a multiple of $10$. Crisp then starts at $0$. Every second, he has a $\frac{2}{3}$ chance of jumping from his current location $x$ to $x+3$, and a $\frac{1}{3}$ chance of jumping from his current location $x$ to $x+7$. When Crisp jumps on either a dime or a nickel, he stops jumping. What is the probability that Crisp [i]stops on a dime[/i]?
2018 Iran MO (1st Round), 1
In a village with a population of $1000$, two hundred people have been infected by a disease. A diagnostic test can be done to check whether a person is infected, but the result could be erroneous. That is, there is a $5\%$ probability that the test result of an infected person shows that they are not infected and a $5\%$ probability that the test result of a healthy person shows that they are infected. We randomly choose someone from the population of this village and take the diagnostic test from him. What is the probability that the test result declares that person is infected?
2008 Harvard-MIT Mathematics Tournament, 15
In a game show, Bob is faced with $ 7$ doors, $ 2$ of which hide prizes. After he chooses a door, the host opens three other doors, of which one is hiding a prize. Bob chooses to switch to another door. What is the probability that his new door is hiding a prize?
2013 USAMO, 5
Given positive integers $m$ and $n$, prove that there is a positive integer $c$ such that the numbers $cm$ and $cn$ have the same number of occurrences of each non-zero digit when written in base ten.
2010 AIME Problems, 4
Jackie and Phil have two fair coins and a third coin that comes up heads with probability $ \frac47$. Jackie flips the three coins, and then Phil flips the three coins. Let $ \frac{m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
2013 Math Prize For Girls Problems, 18
Ranu starts with one standard die on a table. At each step, she rolls all the dice on the table: if all of them show a 6 on top, then she places one more die on the table; otherwise, she does nothing more on this step. After 2013 such steps, let $D$ be the number of dice on the table. What is the expected value (average value) of $6^D$?
1996 AMC 12/AHSME, 16
A fair standard six-sided dice is tossed three times. Given that the sum of the first two tosses equal the third, what is the probability that at least one $2$ is tossed?
$\displaystyle \textbf{(A)} \ \frac{1}{6} \qquad \textbf{(B)} \ \frac{91}{216} \qquad \textbf{(C)} \ \frac{1}{2} \qquad \textbf{(D)} \ \frac{8}{15} \qquad \textbf{(E)} \ \frac{7}{12}$
2020 AMC 10, 13
A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square$?$
$\textbf{(A) } \frac{1}{2} \qquad \textbf{(B) } \frac{5}{8} \qquad \textbf{(C) } \frac{2}{3} \qquad \textbf{(D) } \frac{3}{4} \qquad \textbf{(E) } \frac{7}{8}$
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]