This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 86

2006 MOP Homework, 2

Points $P$ and $Q$ lies inside triangle $ABC$ such that $\angle ACP =\angle BCQ$ and $\angle CAP = \angle BAQ$. Denote by $D,E$, and $F$ the feet of perpendiculars from $P$ to lines $BC,CA$, and $AB$, respectively. Prove that if $\angle DEF = 90^o$, then $Q$ is the orthocenter of triangle $BDF$.

VMEO III 2006, 10.1

Given a triangle $ABC$ ($AB \ne AC$). Let $ P$ be a point in the plane containing triangle $ABC$ satisfying the following property: If the projections of $ P$ onto $AB$,$AC$ are $C_1$,$B_1$ respectively, then $\frac{PB}{PC}=\frac{PC_1}{PB_1}=\frac{AB}{AC}$ or $\frac{PB}{PC}=\frac{PB_1}{PC_1}=\frac{AB}{AC}$. Prove that $\angle PBC + \angle PCB = \angle BAC$.

1971 All Soviet Union Mathematical Olympiad, 150

The projections of the body on two planes are circles. Prove that they have the same radius.

1987 Mexico National Olympiad, 3

Consider two lines $\ell$ and $\ell ' $ and a fixed point $P$ equidistant from these lines. What is the locus of projections $M$ of $P$ on $AB$, where $A$ is on $\ell $, $B$ on $\ell ' $, and angle $\angle APB$ is right?

2008 May Olympiad, 2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

2010 Bundeswettbewerb Mathematik, 3

Given an acute-angled triangle $ABC$. Let $CB$ be the altitude and $E$ a random point on the line $CD$. Finally, let $P, Q, R$ and $S$ are the projections of $D$ on the straight lines $AC, AE, BE$ and $BC$. Prove that the points $P, Q, R$ and $S$ lie either on a circle or on one straight line.

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

1951 Moscow Mathematical Olympiad, 205

Among all orthogonal projections of a regular tetrahedron to all possible planes, find the projection of the greatest area.

1994 Czech And Slovak Olympiad IIIA, 2

A cuboid of volume $V$ contains a convex polyhedron $M$. The orthogonal projection of $M$ onto each face of the cuboid covers the entire face. What is the smallest possible volume of polyhedron $M$?

Durer Math Competition CD Finals - geometry, 2015.D4

The projection of the vertex $C$ of the rectangle $ABCD$ on the diagonal $BD$ is $E$. The projections of $E$ on $AB$ and $AD$ are $F$ and $G$ respectively. Prove that $$AF^{2/3} + AG^{2/3} = AC^{2/3}$$ .

1951 Moscow Mathematical Olympiad, 200

What figure can the central projection of a triangle be? (The center of the projection does not lie on the plane of the triangle.)