Found problems: 242
2019 Canadian Mathematical Olympiad Qualification, 2
Rosemonde is stacking spheres to make pyramids. She constructs two types of pyramids $S_n$ and $T_n$. The pyramid $S_n$ has $n$ layers, where the top layer is a single sphere and the $i^{th}$ layer is an $i\times $i square grid of spheres for each $2 \le i \le n$. Similarly, the pyramid $T_n$ has $n$ layers where the top layer is a single sphere and the $i^{th}$ layer is $\frac{i(i+1)}{2}$ spheres arranged into an equilateral triangle for each $2 \le i \le n$.
1990 IMO Longlists, 44
Prove that for any positive integer $n$, the number of odd integers among the binomial coefficients $\binom nh \ ( 0 \leq h \leq n)$ is a power of 2.
2003 Tournament Of Towns, 1
A triangular pyramid $ABCD$ is given. Prove that $\frac Rr > \frac ah$, where $R$ is the radius of the circumscribed sphere, $r$ is the radius of the inscribed sphere, $a$ is the length of the longest edge, $h$ is the length of the shortest altitude (from a vertex to the opposite face).
1999 National Olympiad First Round, 17
In a regular pyramid with top point $ T$ and equilateral base $ ABC$, let $ P$, $ Q$, $ R$, $ S$ be the midpoints of $ \left[AB\right]$, $ \left[BC\right]$, $ \left[CT\right]$ and $ \left[TA\right]$, respectively. If $ \left|AB\right| \equal{} 6$ and the altitude of pyramid is equal to $ 2\sqrt {15}$, then area of $ PQRS$ will be
$\textbf{(A)}\ 4\sqrt {15} \qquad\textbf{(B)}\ 8\sqrt {2} \qquad\textbf{(C)}\ 8\sqrt {3} \qquad\textbf{(D)}\ 6\sqrt {5} \qquad\textbf{(E)}\ 9\sqrt {2}$
1954 Moscow Mathematical Olympiad, 284
How many planes of symmetry can a triangular pyramid have?
1953 Moscow Mathematical Olympiad, 255
Divide a cube into three equal pyramids.
2024 Sharygin Geometry Olympiad, 24
Let $SABC$ be a pyramid with right angles at the vertex $S$. Points $A', B', C'$ lie on the edges $SA, SB, SC$ respectively in such a way that the triangles $ABC$ and $A'B'C'$ are similar. Does this yield that the planes $ABC$ and $A'B'C'$ are parallel?
Ukrainian TYM Qualifying - geometry, I.5
The heights of a triangular pyramid intersect at one point. Prove that all flat angles at any vertex of the surface are either acute, or right, or obtuse.
1983 Brazil National Olympiad, 2
An equilateral triangle $ABC$ has side a. A square is constructed on the outside of each side of the triangle. A right regular pyramid with sloping side $a$ is placed on each square. These pyramids are rotated about the sides of the triangle so that the apex of each pyramid comes to a common point above the triangle. Show that when this has been done, the other vertices of the bases of the pyramids (apart from the vertices of the triangle) form a regular hexagon.
2006 AIME Problems, 14
A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let $h$ be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then $h$ can be written in the form $\frac m{\sqrt{n}},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor.$ (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.)
2005 International Zhautykov Olympiad, 3
Let SABC be a regular triangular pyramid. Find the set of all points $ D (D! \equal{} S)$ in the space satisfing the equation $ |cos ASD \minus{} 2cosBSD \minus{} 2 cos CSD| \equal{} 3$.
1985 Vietnam National Olympiad, 3
A triangular pyramid $ O.ABC$ with base $ ABC$ has the property that the lengths of the altitudes from $ A$, $ B$ and $ C$ are not less than $ \frac{OB \plus{}OC}{2}$, $ \frac{OC \plus{} OA}{2}$ and $ \frac{OA \plus{} OB}{2}$, respectively. Given that the area of $ ABC$ is $ S$, calculate the volume of the pyramid.
2007 Oral Moscow Geometry Olympiad, 5
At the base of the quadrangular pyramid $SABCD$ lies the quadrangle $ABCD$. whose diagonals are perpendicular and intersect at point $P$, and $SP$ is the altitude of the pyramid. Prove that the projections of the point $P$ onto the lateral faces of the pyramid lie on the same circle.
(A. Zaslavsky)
1989 Dutch Mathematical Olympiad, 4
Given is a regular $n$-sided pyramid with top $T$ and base $A_1A_2A_3... A_n$. The line perpendicular to the ground plane through a point $B$ of the ground plane within $A_1A_2A_3... A_n$ intersects the plane $TA_1A_2$ at $C_1$, the plane $TA_2A_3$ at $C_2$, and so on, and finally the plane $TA_nA_1$ at $C_n$. Prove that $BC_1 + BC_2 + ... + BC_n$ is independent of choice of $B$'s.
2016 AIME Problems, 4
A right prism with height $h$ has bases that are regular hexagons with sides of length $12$. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^\circ$. Find $h^2$.
2007 Princeton University Math Competition, 2
In how many distinguishable ways can $10$ distinct pool balls be formed into a pyramid ($6$ on the bottom, $3$ in the middle, one on top), assuming that all rotations of the pyramid are indistinguishable?
2022 Bulgarian Spring Math Competition, Problem 12.2
Let $ABCDV$ be a regular quadrangular pyramid with $V$ as the apex. The plane $\lambda$ intersects the $VA$, $VB$, $VC$ and $VD$ at $M$, $N$, $P$, $Q$ respectively. Find $VQ : QD$, if $VM : MA = 2 : 1$, $VN : NB = 1 : 1$ and $VP : PC = 1 : 2$.
Kyiv City MO 1984-93 - geometry, 1989.10.5
The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.
2018 Indonesia Juniors, day 2
P6. It is given the integer $Y$ with
$Y = 2018 + 20118 + 201018 + 2010018 + \cdots + 201 \underbrace{00 \ldots 0}_{\textrm{100 digits}} 18.$
Determine the sum of all the digits of such $Y$. (It is implied that $Y$ is written with a decimal representation.)
P7. Three groups of lines divides a plane into $D$ regions. Every pair of lines in the same group are parallel. Let $x, y$ and $z$ respectively be the number of lines in groups 1, 2, and 3. If no lines in group 3 go through the intersection of any two lines (in groups 1 and 2, of course), then the least number of lines required in order to have more than 2018 regions is ....
P8. It is known a frustum $ABCD.EFGH$ where $ABCD$ and $EFGH$ are squares with both planes being parallel. The length of the sides of $ABCD$ and $EFGH$ respectively are $6a$ and $3a$, and the height of the frustum is $3t$. Points $M$ and $N$ respectively are intersections of the diagonals of $ABCD$ and $EFGH$ and the line $MN$ is perpendicular to the plane $EFGH$. Construct the pyramids $M.EFGH$ and $N.ABCD$ and calculate the volume of the 3D figure which is the intersection of pyramids $N.ABCD$ and $M.EFGH$.
P9. Look at the arrangement of natural numbers in the following table. The position of the numbers is determined by their row and column numbers, and its diagonal (which, the sequence of numbers is read from the bottom left to the top right). As an example, the number $19$ is on the 3rd row, 4th column, and on the 6th diagonal. Meanwhile the position of the number $26$ is on the 3rd row, 5th column, and 7th diagonal.
(Image should be placed here, look at attachment.)
a) Determine the position of the number $2018$ based on its row, column, and diagonal.
b) Determine the average of the sequence of numbers whose position is on the "main diagonal" (quotation marks not there in the first place), which is the sequence of numbers read from the top left to the bottom right: 1, 5, 13, 25, ..., which the last term is the largest number that is less than or equal to $2018$.
P10. It is known that $A$ is the set of 3-digit integers not containing the digit $0$. Define a [i]gadang[/i] number to be the element of $A$ whose digits are all distinct and the digits contained in such number are not prime, and (a [i]gadang[/i] number leaves a remainder of 5 when divided by 7. If we pick an element of $A$ at random, what is the probability that the number we picked is a [i]gadang[/i] number?
2006 Tournament of Towns, 4
Is it possible to split a prism into disjoint set of pyramids so that each pyramid has its base on one base of the prism, while its vertex on another base of the prism ? (6)
1977 Poland - Second Round, 4
A pyramid with a quadrangular base is given such that each pair of circles inscribed in adjacent faces has a common point. Prove that the touchpoints of these circles with the base of the pyramid lie on one circle.
2009 Sharygin Geometry Olympiad, 24
A sphere is inscribed into a quadrangular pyramid. The point of contact of the sphere with the base of the pyramid is projected to the edges of the base. Prove that these projections are concyclic.
1972 IMO Longlists, 5
Given a pyramid whose base is an $n$-gon inscribable in a circle, let $H$ be the projection of the top vertex of the pyramid to its base. Prove that the projections of $H$ to the lateral edges of the pyramid lie on a circle.
2004 AMC 12/AHSME, 22
Three mutually tangent spheres of radius $ 1$ rest on a horizontal plane. A sphere of radius $ 2$ rests on them. What is the distance from the plane to the top of the larger sphere?
$ \textbf{(A)}\ 3 \plus{} \frac {\sqrt {30}}{2} \qquad \textbf{(B)}\ 3 \plus{} \frac {\sqrt {69}}{3} \qquad \textbf{(C)}\ 3 \plus{} \frac {\sqrt {123}}{4}\qquad \textbf{(D)}\ \frac {52}{9}\qquad \textbf{(E)}\ 3 \plus{} 2\sqrt2$
May Olympiad L1 - geometry, 1995.4
We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?