Found problems: 1679
2011 Purple Comet Problems, 1
The ratio of $3$ to the positive number $n$ is the same as the ratio of $n$ to $192.$ Find $n.$
2009 China Team Selection Test, 2
In acute triangle $ ABC,$ points $ P,Q$ lie on its sidelines $ AB,AC,$ respectively. The circumcircle of triangle $ ABC$ intersects of triangle $ APQ$ at $ X$ (different from $ A$). Let $ Y$ be the reflection of $ X$ in line $ PQ.$ Given $ PX>PB.$ Prove that $ S_{\bigtriangleup XPQ}>S_{\bigtriangleup YBC}.$ Where $ S_{\bigtriangleup XYZ}$ denotes the area of triangle $ XYZ.$
2008 ITest, 5
Jerry recently returned from a trip to South America where he helped two old factories reduce pollution output by installing more modern scrubber equipment. Factory A previously filtered $80\%$ of pollutants and Factory B previously filled $72\%$ of pollutants. After installing the new scrubber system, both factories now filter $99.5\%$ of pollutants.
Jerry explains the level of pollution reduction to Michael, "Factory A is the much larger factory. It's four times as large as Factory B. Without any filters at all, it would pollute four times as much as Factory B. Even with the better pollution filtration system, Factory A was polluting nearly three times as much as Factory B."
Assuming the factories are the same in every way except size and previous percentage of pollution filtered, find $a+b$ where $a/b$ is the ratio in lowest terms of volume of pollutants unfiltered from both factories $\textit{after}$ installation of the new scrubber system to the volume of pollutants unfiltered from both factories $\textit{before}$ installation of the new scrubber system.
1985 AMC 12/AHSME, 17
Diagonal $ DB$ of rectangle $ ABCD$ is divided into $ 3$ segments of length $ 1$ by parallel lines $ L$ and $ L'$ that pass through $ A$ and $ C$ and are perpendicular to $ DB$. The area of $ ABCD$, rounded to the nearest tenth, is
[asy]size(200);
defaultpen(linewidth(0.7)+fontsize(10));
real x=sqrt(6), y=sqrt(3), a=0.4;
pair D=origin, A=(0,y), B=(x,y), C=(x,0), E=foot(C,B,D), F=foot(A,B,D);
real r=degrees(B);
pair M1=F+3*dir(r)*dir(90), M2=F+3*dir(r)*dir(-90), N1=E+3*dir(r)*dir(90), N2=E+3*dir(r)*dir(-90);
markscalefactor=0.02;
draw(B--C--D--A--B--D^^M1--M2^^N1--N2^^rightanglemark(A,F,B,6)^^rightanglemark(N1,E,B,6));
pair W=A+a*dir(135), X=B+a*dir(45), Y=C+a*dir(-45), Z=D+a*dir(-135);
label("A", A, NE);
label("B", B, NE);
label("C", C, dir(0));
label("D", D, dir(180));
label("$L$", (x/2,0), SW);
label("$L^\prime$", C, SW);
label("1", D--F, NW);
label("1", F--E, SE);
label("1", E--B, SE);
clip(W--X--Y--Z--cycle);
[/asy]
$ \textbf{(A)}\ 4.1 \qquad \textbf{(B)}\ 4.2 \qquad \textbf{(C)}\ 4.3 \qquad \textbf{(D)}\ 4.4 \qquad \textbf{(E)}\ 4.5$
2008 Vietnam Team Selection Test, 1
On the plane, given an angle $ xOy$. $ M$ be a mobile point on ray $ Ox$ and $ N$ a mobile point on ray $ Oy$. Let $ d$ be the external angle bisector of angle $ xOy$ and $ I$ be the intersection of $ d$ with the perpendicular bisector of $ MN$. Let $ P$, $ Q$ be two points lie on $ d$ such that $ IP \equal{} IQ \equal{} IM \equal{} IN$, and let $ K$ the intersection of $ MQ$ and $ NP$.
$ 1.$ Prove that $ K$ always lie on a fixed line.
$ 2.$ Let $ d_1$ line perpendicular to $ IM$ at $ M$ and $ d_2$ line perpendicular to $ IN$ at $ N$. Assume that there exist the intersections $ E$, $ F$ of $ d_1$, $ d_2$ from $ d$. Prove that $ EN$, $ FM$ and $ OK$ are concurrent.
1997 India Regional Mathematical Olympiad, 1
Let $P$ be an interior point of a triangle $ABC$ and let $BP$ and $CP$ meet $AC$ and $AB$ in $E$ and $F$ respectively. IF $S_{BPF} = 4$,$S_{BPC} = 8$ and $S_{CPE} = 13$, find $S_{AFPE}.$
2011 AIME Problems, 2
In rectangle $ABCD$, $AB=12$ and $BC=10$. Points $E$ and $F$ lie inside rectangle $ABCD$ so that $BE=9$, $DF=8$, $\overline{BE} \parallel \overline{DF}$, $\overline{EF} \parallel \overline{AB}$, and line $BE$ intersects segment $\overline{AD}$. The length $EF$ can be expressed in the form $m\sqrt{n}-p$, where $m,n,$ and $p$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n+p$.
2012 Sharygin Geometry Olympiad, 2
We say that a point inside a triangle is good if the lengths of the cevians passing through this point are inversely proportional to the respective side lengths. Find all the triangles for which the number of good points is maximal.
(A.Zaslavsky, B.Frenkin)
2008 AMC 8, 23
In square $ABCE$, $AF=2FE$ and $CD=2DE$. What is the ratio of the area of $\triangle BFD$ to the area of square $ABCE$?
[asy]
size((100));
draw((0,0)--(9,0)--(9,9)--(0,9)--cycle);
draw((3,0)--(9,9)--(0,3)--cycle);
dot((3,0));
dot((0,3));
dot((9,9));
dot((0,0));
dot((9,0));
dot((0,9));
label("$A$", (0,9), NW);
label("$B$", (9,9), NE);
label("$C$", (9,0), SE);
label("$D$", (3,0), S);
label("$E$", (0,0), SW);
label("$F$", (0,3), W);
[/asy]
$ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} $
2001 China National Olympiad, 1
Let $a$ be real number with $\sqrt{2}<a<2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre $O$ lies in its interior. The quadrilateral's circumcircle $\omega$ has radius $1$, and the longest and shortest sides of the quadrilateral have length $a$ and $\sqrt{4-a^2}$, respectively. Lines $L_A,L_B,L_C,L_D$ are tangent to $\omega$ at $A,B,C,D$, respectively.
Let lines $L_A$ and $L_B$, $L_B$ and $L_C$,$L_C$ and $L_D$,$L_D$ and $L_A$ intersect at $A',B',C',D'$ respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.
2014 ELMO Shortlist, 12
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
2008 Harvard-MIT Mathematics Tournament, 18
Let $ ABC$ be a right triangle with $ \angle A \equal{} 90^\circ$. Let $ D$ be the midpoint of $ AB$ and let $ E$ be a point on segment $ AC$ such that $ AD \equal{} AE$. Let $ BE$ meet $ CD$ at $ F$. If $ \angle BFC \equal{} 135^\circ$, determine $ BC / AB$.
2003 Korea - Final Round, 2
Let $M$ be the intersection of two diagonal, $AC$ and $BD$, of a rhombus $ABCD$, where angle $A<90^\circ$. Construct $O$ on segment $MC$ so that $OB<OC$ and let $t=\frac{MA}{MO}$, provided that $O \neq M$. Construct a circle that has $O$ as centre and goes through $B$ and $D$. Let the intersections between the circle and $AB$ be $B$ and $X$. Let the intersections between the circle and $BC$ be $B$ and $Y$. Let the intersections of $AC$ with $DX$ and $DY$ be $P$ and $Q$, respectively. Express $\frac{OQ}{OP}$ in terms of $t$.
1998 Brazil National Olympiad, 3
Two mathematicians, lost in Berlin, arrived on the corner of Barbarossa street with Martin Luther street and need to arrive on the corner of Meininger street with Martin Luther street. Unfortunately they don't know which direction to go along Martin Luther Street to reach Meininger Street nor how far it is, so they must go fowards and backwards along Martin Luther street until they arrive on the desired corner. What is the smallest value for a positive integer $k$ so that they can be sure that if there are $N$ blocks between Barbarossa street and Meininger street then they can arrive at their destination by walking no more than $kN$ blocks (no matter what $N$ turns out to be)?
2003 Flanders Math Olympiad, 4
Consider all points with integer coordinates in the carthesian plane. If one draws a circle with M(0,0) and a well-chose radius r, the circles goes through some of those points. (like circle with $r=2\sqrt2$ goes through 4 points)
Prove that $\forall n\in \mathbb{N}, \exists r$ so that the circle with midpoint 0,0 and radius $r$ goes through at least $n$ points.
2000 Flanders Math Olympiad, 2
Given two triangles and such that the lengths of the sides of the first triangle are the lengths of the medians of the second triangle. Determine the ratio of the areas of these triangles.
1999 USAMTS Problems, 4
There are $8436$ steel balls, each with radius $1$ centimeter, stacked in a tetrahedral pile, with one ball on top, $3$ balls in the second layer, $6$ in the third layer, $10$ in the fourth, and so on. Determine the height of the pile in centimeters.
2014 Singapore Senior Math Olympiad, 1
In the triangle $ABC$, the excircle opposite to the vertex $A$ with centre $I$ touches the side BC at D. (The circle also touches the sides of $AB$, $AC$ extended.) Let $M$ be the midpoint of $BC$ and $N$ the midpoint of $AD$. Prove that $I,M,N$ are collinear.
2008 Sharygin Geometry Olympiad, 2
(F.Nilov) Given right triangle $ ABC$ with hypothenuse $ AC$ and $ \angle A \equal{} 50^{\circ}$. Points $ K$ and $ L$ on the cathetus $ BC$ are such that $ \angle KAC \equal{} \angle LAB \equal{} 10^{\circ}$. Determine the ratio $ CK/LB$.
2016 Oral Moscow Geometry Olympiad, 6
Given an acute triangle $ABC$. Let $A'$ be a point symmetric to $A$ with respect to $BC, O_A$ is the center of the circle passing through $A$ and the midpoints of the segments $A'B$ and $A'C. O_B$ and $O_C$ points are defined similarly. Find the ratio of the radii of the circles circumscribed around the triangles $ABC$ and $O_AO_BO_C$.
1987 AMC 8, 4
Martians measure angles in clerts. There are $500$ clerts in a full circle. How many clerts are there in a right angle?
$\text{(A)}\ 90 \qquad \text{(B)}\ 100 \qquad \text{(C)}\ 125 \qquad \text{(D)}\ 180 \qquad \text{(E)}\ 250$
1999 Estonia National Olympiad, 3
Let $E$ and $F$ be the midpoints of the lines $AB$ and $DA$ of a square $ABCD$, respectively and let $G$ be the intersection of $DE$ with $CF$. Find the aspect ratio of sidelengths of the triangle $EGC$, $| EG | : | GC | : | CE |$.
2013 Brazil Team Selection Test, 1
Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.
2003 AMC 10, 20
In rectangle $ ABCD$, $ AB\equal{}5$ and $ BC\equal{}3$. Points $ F$ and $ G$ are on $ \overline{CD}$ so that $ DF\equal{}1$ and $ GC\equal{}2$. Lines $ AF$ and $ BG$ intersect at $ E$. Find the area of $ \triangle{AEB}$.
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
pair A=(0,0), B=(5,0), C=(5,3), D=(0,3), F=(1,3), G=(3,3);
pair E=extension(A,F,B,G);
draw(A--B--C--D--A--E--B);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,NE);
label("$D$",D,NW);
label("$E$",E,N);
label("$F$",F,SE);
label("$G$",G,SW);
label("$B$",B,SE);
label("1",midpoint(D--F),N);
label("2",midpoint(G--C),N);
label("3",midpoint(B--C),E);
label("3",midpoint(A--D),W);
label("5",midpoint(A--B),S);[/asy]$ \textbf{(A)}\ 10 \qquad
\textbf{(B)}\ \frac{21}{2} \qquad
\textbf{(C)}\ 12 \qquad
\textbf{(D)}\ \frac{25}{2} \qquad
\textbf{(E)}\ 15$
2005 AMC 10, 23
Let $ \overline{AB}$ be a diameter of a circle and $ C$ be a point on $ \overline{AB}$ with $ 2 \cdot AC \equal{} BC$. Let $ D$ and $ E$ be points on the circle such that $ \overline{DC} \perp \overline{AB}$ and $ \overline{DE}$ is a second diameter. What is the ratio of the area of $ \triangle DCE$ to the area of $ \triangle ABD$?
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0);
pair D=dir(aCos(C.x)), E=(-D.x,-D.y);
draw(A--B--D--cycle);
draw(D--E--C);
draw(unitcircle,white);
drawline(D,C);
dot(O);
clip(unitcircle);
draw(unitcircle);
label("$E$",E,SSE);
label("$B$",B,E);
label("$A$",A,W);
label("$D$",D,NNW);
label("$C$",C,SW);
draw(rightanglemark(D,C,B,2));[/asy]$ \textbf{(A)} \ \frac {1}{6} \qquad \textbf{(B)} \ \frac {1}{4} \qquad \textbf{(C)}\ \frac {1}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {2}{3}$