This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2021 Dutch BxMO TST, 5

Tags: ratio , geometry
Given is a triangle $ABC$ with the property that $|AB| + |AC| = 3|BC|$. Let $T$ be the point on segment $AC$ such that $|AC| = 4|AT|$. Let $K$ and $L$ be points on the interior of line segments $AB$ and $AC$ respectively such that $KL \parallel BC$ and $KL$ is tangent to the inscribed circle of $\vartriangle ABC$. Let $S$ be the intersection of $BT$ and $KL$. Determine the ratio $\frac{|SL|}{|KL|}$

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

2002 AMC 10, 25

In trapezoid $ ABCD$ with bases $ AB$ and $ CD$, we have $ AB\equal{}52$, $ BC\equal{}12$, $ CD\equal{}39$, and $ DA\equal{}5$. The area of $ ABCD$ is [asy] pair A,B,C,D; A=(0,0); B=(52,0); C=(38,20); D=(5,20); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--D--cycle); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",D,N); label("52",(A+B)/2,S); label("39",(C+D)/2,N); label("12",(B+C)/2,E); label("5",(D+A)/2,W);[/asy] $ \text{(A)}\ 182 \qquad \text{(B)}\ 195 \qquad \text{(C)}\ 210 \qquad \text{(D)}\ 234 \qquad \text{(E)}\ 260$

2006 Stanford Mathematics Tournament, 5

A geometric series is one where the ratio between each two consecutive terms is constant (ex. 3,6,12,24,...). The fifth term of a geometric series is 5!, and the sixth term is 6!. What is the fourth term?

1975 AMC 12/AHSME, 16

If the first term of an infinite geometric series is a positive integer, the common ratio is the reciprocal of a positive integer, and the sum of the series is 3, then the sum of the first two terms of the series is $ \textbf{(A)}\ 1/3 \qquad \textbf{(B)}\ 2/3 \qquad \textbf{(C)}\ 8/3 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 9/2$

1953 AMC 12/AHSME, 28

In triangle $ ABC$, sides $ a,b$ and $ c$ are opposite angles $ A,B$ and $ C$ respectively. $ AD$ bisects angle $ A$ and meets $ BC$ at $ D$. Then if $ x \equal{} \overline{CD}$ and $ y \equal{} \overline{BD}$ the correct proportion is: $ \textbf{(A)}\ \frac {x}{a} \equal{} \frac {a}{b \plus{} c} \qquad\textbf{(B)}\ \frac {x}{b} \equal{} \frac {a}{a \plus{} c} \qquad\textbf{(C)}\ \frac {y}{c} \equal{} \frac {c}{b \plus{} c} \\ \textbf{(D)}\ \frac {y}{c} \equal{} \frac {a}{b \plus{} c} \qquad\textbf{(E)}\ \frac {x}{y} \equal{} \frac {c}{b}$

2006 AMC 12/AHSME, 16

Circles with centers $ A$ and $ B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $ C$ and $ D$, respectively. Lines $ AB$ and $ CD$ intersect at $ E$, and $ AE \equal{} 5$. What is $ CD$? [asy]unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C)); dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8)); label("$A$",A,W); label("$B$",B,E); label("$C$",C,SE); label("$E$",Ep,SSE); label("$D$",D,NW);[/asy]$ \textbf{(A) } 13\qquad \textbf{(B) } \frac {44}{3}\qquad \textbf{(C) } \sqrt {221}\qquad \textbf{(D) } \sqrt {255}\qquad \textbf{(E) } \frac {55}{3}$

2012 South africa National Olympiad, 5

Let $ABC$ be a triangle such that $AB\neq AC$. We denote its orthocentre by $H$, its circumcentre by $O$ and the midpoint of $BC$ by $D$. The extensions of $HD$ and $AO$ meet in $P$. Prove that triangles $AHP$ and $ABC$ have the same centroid.

2003 Greece National Olympiad, 3

Tags: geometry , ratio
Given are a circle $\mathcal{C}$ with center $K$ and radius $r,$ point $A$ on the circle and point $R$ in its exterior. Consider a variable line $e$ through $R$ that intersects the circle at two points $B$ and $C.$ Let $H$ be the orthocenter of triangle $ABC.$ Show that there is a unique point $T$ in the plane of circle $\mathcal{C}$ such that the sum $HA^2 + HT^2$ remains constant (as $e$ varies.)

2003 Oral Moscow Geometry Olympiad, 2

In a convex quadrilateral $ABCD$, $\angle ABC = 90^o$ , $\angle BAC = \angle CAD$, $AC = AD, DH$ is the alltitude of the triangle $ACD$. In what ratio does the line $BH$ divide the segment $CD$?

1990 India Regional Mathematical Olympiad, 3

A square sheet of paper $ABCD$ is so folded that $B$ falls on the mid point of $M$ of $CD$. Prove that the crease will divide $BC$ in the ration $5 : 3$.

2013 Denmark MO - Mohr Contest, 5

The angle bisector of $A$ in triangle $ABC$ intersects $BC$ in the point $D$. The point $E$ lies on the side $AC$, and the lines $AD$ and $BE$ intersect in the point $F$. Furthermore, $\frac{|AF|}{|F D|}= 3$ and $\frac{|BF|}{|F E|}=\frac{5}{3}$. Prove that $|AB| = |AC|$. [img]https://1.bp.blogspot.com/-evofDCeJWPY/XzT9dmxXzVI/AAAAAAAAMVY/ZN87X3Cg8iMiULwvMhgFrXbdd_f1f-JWwCLcBGAsYHQ/s0/2013%2BMohr%2Bp5.png[/img]

1972 AMC 12/AHSME, 7

Tags: ratio
If $yz:zx:xy=1:2:3$, then $\dfrac{x}{yz}:\dfrac{y}{zx}$ is equal to $\textbf{(A) }3:2\qquad\textbf{(B) }1:2\qquad\textbf{(C) }1:4\qquad\textbf{(D) }2:1\qquad \textbf{(E) }4:1$

2024 Australian Mathematical Olympiad, P7

Let $ABCD$ be a square and let $P$ be a point on side $AB$. The point $Q$ lies outside the square such that $\angle ABQ = \angle ADP$ and $\angle AQB = 90^{\circ}$. The point $R$ lies on the side $BC$ such that $\angle BAR = \angle ADQ$. Prove that the lines $AR, CQ$ and $DP$ pass through a common point.

2017 Israel Oral Olympiad, 5

A mink is standing in the center of a field shaped like a regular polygon. The field is surrounded by a fence, and the mink can only exit through the vertices of the polygon. A dog is standing on one of the vertices, and can move along the fence. The mink wants to escape the field, while the dog tries to prevent it. Each of them moves with constant velocity. For what ratio of velocities could the mink escape if: a. The field is a regular triangle? b. The field is a square?

1994 India National Olympiad, 1

Let $G$ be the centroid of the triangle $ABC$ in which the angle at $C$ is obtuse and $AD$ and $CF$ be the medians from $A$ and $C$ respectively onto the sides $BC$ and $AB$. If the points $\ B,\ D, \ G$ and $\ F$ are concyclic, show that $\dfrac{AC}{BC} \geq \sqrt{2}$. If further $P$ is a point on the line $BG$ extended such that $AGCP$ is a parallelogram, show that triangle $ABC$ and $GAP$ are similar.

2005 Turkey Junior National Olympiad, 1

Let $ABC$ be an acute triangle. Let$H$ and $D$ be points on $[AC]$ and $[BC]$, respectively, such that $BH \perp AC$ and $HD \perp BC$. Let $O_1$ be the circumcenter of $\triangle ABH$, and $O_2$ be the circumcenter of $\triangle BHD$, and $O_3$ be the circumcenter of $\triangle HDC$. Find the ratio of area of $\triangle O_1O_2O_3$ and $\triangle ABH$.

2012 Brazil National Olympiad, 6

Find all surjective functions $f\colon (0,+\infty) \to (0,+\infty)$ such that $2x f(f(x)) = f(x)(x+f(f(x)))$ for all $x>0$.

1996 Estonia National Olympiad, 3

The vertices of the quadrilateral $ABCD$ lie on a single circle. The diagonals of this rectangle divide the angles of the rectangle at vertices $A$ and $B$ and divides the angles at vertices $C$ and $D$ in a $1: 2$ ratio. Find angles of the quadrilateral $ABCD$.

2009 Iran Team Selection Test, 10

Let $ ABC$ be a triangle and $ AB\ne AC$ . $ D$ is a point on $ BC$ such that $ BA \equal{} BD$ and $ B$ is between $ C$ and $ D$ . Let $ I_{c}$ be center of the circle which touches $ AB$ and the extensions of $ AC$ and $ BC$ . $ CI_{c}$ intersect the circumcircle of $ ABC$ again at $ T$ . If $ \angle TDI_{c} \equal{} \frac {\angle B \plus{} \angle C}{4}$ then find $ \angle A$

1988 IMO Shortlist, 12

In a triangle $ ABC,$ choose any points $ K \in BC, L \in AC, M \in AB, N \in LM, R \in MK$ and $ F \in KL.$ If $ E_1, E_2, E_3, E_4, E_5, E_6$ and $ E$ denote the areas of the triangles $ AMR, CKR, BKF, ALF, BNM, CLN$ and $ ABC$ respectively, show that \[ E \geq 8 \cdot \sqrt [6]{E_1 E_2 E_3 E_4 E_5 E_6}. \]

1982 AMC 12/AHSME, 5

Tags: ratio
Two positive numbers $x$ and $y$ are in the ratio $a: b$ where $0 < a < b$. If $x+y = c$, then the smaller of $x$ and $y$ is $\textbf{(A)} \ \frac{ac}{b} \qquad \textbf{(B)} \ \frac{bc-ac}{b} \qquad \textbf{(C)} \ \frac{ac}{a+b} \qquad \textbf{(D)} \ \frac{bc}{a+b} \qquad \textbf{(E)} \ \frac{ac}{b-a}$

1965 AMC 12/AHSME, 37

Point $ E$ is selected on side $ AB$ of triangle $ ABC$ in such a way that $ AE: EB \equal{} 1: 3$ and point $ D$ is selected on side $ BC$ such that $ CD: DB \equal{} 1: 2$. The point of intersection of $ AD$ and $ CE$ is $ F$. Then $ \frac {EF}{FC} \plus{} \frac {AF}{FD}$ is: $ \textbf{(A)}\ \frac {4}{5} \qquad \textbf{(B)}\ \frac {5}{4} \qquad \textbf{(C)}\ \frac {3}{2} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \frac {5}{2}$

2004 All-Russian Olympiad, 3

Let $ ABCD$ be a quadrilateral which is a cyclic quadrilateral and a tangent quadrilateral simultaneously. (By a [i]tangent quadrilateral[/i], we mean a quadrilateral that has an incircle.) Let the incircle of the quadrilateral $ ABCD$ touch its sides $ AB$, $ BC$, $ CD$, and $ DA$ in the points $ K$, $ L$, $ M$, and $ N$, respectively. The exterior angle bisectors of the angles $ DAB$ and $ ABC$ intersect each other at a point $ K^{\prime}$. The exterior angle bisectors of the angles $ ABC$ and $ BCD$ intersect each other at a point $ L^{\prime}$. The exterior angle bisectors of the angles $ BCD$ and $ CDA$ intersect each other at a point $ M^{\prime}$. The exterior angle bisectors of the angles $ CDA$ and $ DAB$ intersect each other at a point $ N^{\prime}$. Prove that the straight lines $ KK^{\prime}$, $ LL^{\prime}$, $ MM^{\prime}$, and $ NN^{\prime}$ are concurrent.

2011 AMC 12/AHSME, 12

A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square? [asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2)); draw(A--B--C--D--E--F--G--H--cycle); draw(A--D); draw(B--G); draw(C--F); draw(E--H); [/asy] $ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$