This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2005 IMAR Test, 3

A flea moves in the positive direction on the real Ox axis, starting from the origin. He can only jump over distances equal with $\sqrt 2$ or $\sqrt{2005}$. Prove that there exists $n_0$ such that the flea can reach any interval $[n,n+1]$ with $n\geq n_0$.

1997 Romania Team Selection Test, 1

Tags: geometry , vector , ratio
Let $ABCDEF$ be a convex hexagon, and let $P= AB \cap CD$, $Q = CD \cap EF$, $R = EF \cap AB$, $S = BC \cap DE$, $T = DE \cap FA$, $U = FA \cap BC$. Prove that $\frac{PQ}{CD} = \frac{QR}{EF} = \frac{RP}{AB}$ if and only if $\frac{ST}{DE} = \frac{TU}{FA} = \frac{US}{BC}$

2007 Croatia Team Selection Test, 5

Tags: geometry , symmetry , ratio
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.

2001 Polish MO Finals, 2

Let $ABCD$ be a parallelogram and let $K$ and $L$ be points on the segments $BC$ and $CD$, respectively, such that $BK\cdot AD=DL\cdot AB$. Let the lines $DK$ and $BL$ intersect at $P$. Show that $\measuredangle DAP=\measuredangle BAC$.

2013 District Olympiad, 2

Given triangle $ABC$ and the points$D,E\in \left( BC \right)$, $F,G\in \left( CA \right)$, $H,I\in \left( AB \right)$ so that $BD=CE$, $CF=AG$ and $AH=BI$. Note with $M,N,P$ the midpoints of $\left[ GH \right]$, $\left[ DI \right]$ and $\left[ EF \right]$ and with ${M}'$ the intersection of the segments $AM$and $BC$. a) Prove that $\frac{B{M}'}{C{M}'}=\frac{AG}{AH}\cdot \frac{AB}{AC}$. b) Prove that the segments$AM$, $BN$ and $CP$ are concurrent.

1961 AMC 12/AHSME, 31

In triangle $ABC$ the ratio $AC:CB$ is $3:4$. The bisector of the exterior angle at $C$ intersects $BA$ extended at $P$ ($A$ is between $P$ and $B$). The ratio $PA:AB$ is: ${{ \textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 3:4 \qquad\textbf{(C)}\ 4:3 \qquad\textbf{(D)}\ 3:1 }\qquad\textbf{(E)}\ 7:1 } $

2002 AIME Problems, 13

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

1999 Belarusian National Olympiad, 4

A circle is inscribed in the trapezoid [i]ABCD[/i]. Let [i]K, L, M, N[/i] be the points of tangency of this circle with the diagonals [i]AC[/i] and [i]BD[/i], respectively ([i]K[/i] is between [i]A[/i] and [i]L[/i], and [i]M[/i] is between [i]B[/i] and [i]N[/i]). Given that $AK\cdot LC=16$ and $BM\cdot ND=\frac94$, find the radius of the circle. [color=red][Moderator edit: A solution of this problem can be found on http://www.ajorza.org/math/mathfiles/scans/belarus.pdf , page 20 (the statement of the problem is on page 6). The author of the problem is I. Voronovich.][/color]

2011 AMC 10, 25

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2008 Harvard-MIT Mathematics Tournament, 2

Tags: inradius , ratio , geometry
Let $ ABC$ be an equilateral triangle. Let $ \Omega$ be its incircle (circle inscribed in the triangle) and let $ \omega$ be a circle tangent externally to $ \Omega$ as well as to sides $ AB$ and $ AC$. Determine the ratio of the radius of $ \Omega$ to the radius of $ \omega$.

2002 AIME Problems, 15

Circles $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ intersect at two points, one of which is $(9,6),$ and the product of the radii is $68.$ The x-axis and the line $y=mx$, where $m>0,$ are tangent to both circles. It is given that $m$ can be written in the form $a\sqrt{b}/c,$ where $a,$ $b,$ and $c$ are positive integers, $b$ is not divisible by the square of any prime, and $a$ and $c$ are relatively prime. Find $a+b+c.$

2014 Korea National Olympiad, 4

Prove that there exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the following (1) $\{f(n) : n\in\mathbb{N}\}$ is a finite set; and (2) For nonzero integers $x_1, x_2, \ldots, x_{1000}$ that satisfy $f(\left|x_1\right|)=f(\left|x_2\right|)=\cdots=f(\left|x_{1000}\right|)$, then $x_1+2x_2+2^2x_3+2^3x_4+2^4x_5+\cdots+2^{999}x_{1000}\ne 0$.

1982 AMC 12/AHSME, 21

In the adjoining figure, the triangle $ABC$ is a right triangle with $\angle BCA=90^\circ$. Median $CM$ is perpendicular to median $BN$, and side $BC=s$. The length of $BN$ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10));real r=54.72; pair B=origin, C=dir(r), A=intersectionpoint(B--(9,0), C--C+4*dir(r-90)), M=midpoint(B--A), N=midpoint(A--C), P=intersectionpoint(B--N, C--M); draw(M--C--A--B--C^^B--N); pair point=P; markscalefactor=0.005; draw(rightanglemark(C,P,B)); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, S); label("$N$", N, dir(C--A)*dir(90)); label("$s$", B--C, NW);[/asy] $\textbf {(A) } s\sqrt 2 \qquad \textbf {(B) } \frac 32s\sqrt2 \qquad \textbf {(C) } 2s\sqrt2 \qquad \textbf {(D) } \frac 12s\sqrt5 \qquad \textbf {(E) } \frac 12s\sqrt6$

2006 Estonia National Olympiad, 2

In a right triangle, the length of one side is a prime and the lengths of the other side and the hypotenuse are integral. The ratio of the triangle perimeter and the incircle diameter is also an integer. Find all possible side lengths of the triangle.

2014 ELMO Shortlist, 12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2006 AIME Problems, 9

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r$, where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r)$.

1988 AMC 12/AHSME, 25

Tags: ratio
$X$, $Y$ and $Z$ are pairwise disjoint sets of people. The average ages of people in the sets $X$, $Y$, $Z$, $X \cup Y$, $X \cup Z$ and $Y \cup Z$ are given in the table below. \begin{tabular}{|c|c|c|c|c|c|c|} \hline \rule{0pt}{1.1em} Set & $X$ & $Y$ & $Z$ & $X\cup Y$ & $X\cup Z$ & $Y\cup Z$\\[0.5ex] \hline \rule{0pt}{2.2em} \shortstack{Average age of \\ people in the set} & 37 & 23 & 41 & 29 & 39.5 & 33\\[1ex]\hline\end{tabular} Find the average age of the people in set $X \cup Y \cup Z$. $ \textbf{(A)}\ 33\qquad\textbf{(B)}\ 33.5\qquad\textbf{(C)}\ 33.6\overline{6}\qquad\textbf{(D)}\ 33.83\overline{3}\qquad\textbf{(E)}\ 34 $

1965 AMC 12/AHSME, 16

Let line $ AC$ be perpendicular to line $ CE$. Connect $ A$ to $ D$, the midpoint of $ CE$, and connect $ E$ to $ B$, the midpoint of $ AC$. If $ AD$ and $ EB$ intersect in point $ F$, and $ \overline{BC} \equal{} \overline{CD} \equal{} 15$ inches, then the area of triangle $ DFE$, in square inches, is: $ \textbf{(A)}\ 50 \qquad \textbf{(B)}\ 50\sqrt {2} \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ \frac {15}{2}\sqrt {105} \qquad \textbf{(E)}\ 100$

1994 China Team Selection Test, 2

An $n$ by $n$ grid, where every square contains a number, is called an $n$-code if the numbers in every row and column form an arithmetic progression. If it is sufficient to know the numbers in certain squares of an $n$-code to obtain the numbers in the entire grid, call these squares a key. [b]a.) [/b]Find the smallest $s \in \mathbb{N}$ such that any $s$ squares in an $n-$code $(n \geq 4)$ form a key. [b]b.)[/b] Find the smallest $t \in \mathbb{N}$ such that any $t$ squares along the diagonals of an $n$-code $(n \geq 4)$ form a key.

2011 Switzerland - Final Round, 8

Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic. [i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]

PEN H Problems, 68

Consider the system \[x+y=z+u,\] \[2xy=zu.\] Find the greatest value of the real constant $m$ such that $m \le \frac{x}{y}$ for any positive integer solution $(x, y, z, u)$ of the system, with $x \ge y$.

2024 Bundeswettbewerb Mathematik, 3

Let $ABC$ be a triangle. For a point $P$ in its interior, we draw the threee lines through $P$ parallel to the sides of the triangle. This partitions $ABC$ in three triangles and three quadrilaterals. Let $V_A$ be the area of the quadrilateral which has $A$ as one vertex. Let $D_A$ be the area of the triangle which has a part of $BC$ as one of its sides. Define $V_B, D_B$ and $V_C, D_C$ similarly. Determine all possible values of $\frac{D_A}{V_A}+\frac{D_B}{V_B}+\frac{D_C}{V_C}$, as $P$ varies in the interior of the triangle.

2024 Sharygin Geometry Olympiad, 15

The difference of two angles of a triangle is greater than $90^{\circ}$. Prove that the ratio of its circumradius and inradius is greater than $4$.

2016 Nigerian Senior MO Round 2, Problem 9

$ABCD$ is a parallelogram, line $DF$ is drawn bisecting $BC$ at $E$ and meeting $AB$ (extended) at $F$ from vertex $C$. Line $CH$ is drawn bisecting side $AD$ at $G$ and meeting $AB$ (extended) at $H$. Lines $DF$ and $CH$ intersect at $I$. If the area of parallelogram $ABCD$ is $x$, find the area of triangle $HFI$ in terms of $x$.

1998 AMC 12/AHSME, 15

Tags: geometry , ratio
A regular hexagon and an equilateral triangle have equal areas. What is the ratio of the length of a side of the triangle to the length of a side of the hexagon? $ \textbf{(A)}\ \sqrt 3\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ \sqrt 6\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ 6$