This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2012 Czech-Polish-Slovak Match, 1

Let $ABC$ be a right angled triangle with hypotenuse $AB$ and $P$ be a point on the shorter arc $AC$ of the circumcircle of triangle $ABC$. The line, perpendicuar to $CP$ and passing through $C$, intersects $AP$, $BP$ at points $K$ and $L$ respectively. Prove that the ratio of area of triangles $BKL$ and $ACP$ is independent of the position of point $P$.

2001 IMO Shortlist, 8

Let $ABC$ be a triangle with $\angle BAC = 60^{\circ}$. Let $AP$ bisect $\angle BAC$ and let $BQ$ bisect $\angle ABC$, with $P$ on $BC$ and $Q$ on $AC$. If $AB + BP = AQ + QB$, what are the angles of the triangle?

1989 IMO Longlists, 80

A balance has a left pan, a right pan, and a pointer that moves along a graduated ruler. Like many other grocer balances, this one works as follows: An object of weight $ L$ is placed in the left pan and another of weight $ R$ in the right pan, the pointer stops at the number $ R \minus{} L$ on the graduated ruler. There are $ n, (n \geq 2)$ bags of coins, each containing $ \frac{n(n\minus{}1)}{2} \plus{} 1$ coins. All coins look the same (shape, color, and so on). $ n\minus{}1$ bags contain real coins, all with the same weight. The other bag (we don’t know which one it is) contains false coins. All false coins have the same weight, and this weight is different from the weight of the real coins. A legal weighing consists of placing a certain number of coins in one of the pans, putting a certain number of coins in the other pan, and reading the number given by the pointer in the graduated ruler. With just two legal weighings it is possible to identify the bag containing false coins. Find a way to do this and explain it.

2000 Romania Team Selection Test, 3

Prove that every positive rational number can be represented in the form $\dfrac{a^{3}+b^{3}}{c^{3}+d^{3}}$ where a,b,c,d are positive integers.

1987 Romania Team Selection Test, 2

Find all positive integers $A$ which can be represented in the form: \[ A = \left ( m - \dfrac 1n \right) \left( n - \dfrac 1p \right) \left( p - \dfrac 1m \right) \] where $m\geq n\geq p \geq 1$ are integer numbers. [i]Ioan Bogdan[/i]

1990 AIME Problems, 7

A triangle has vertices $P=(-8,5)$, $Q=(-15,-19)$, and $R=(1,-7)$. The equation of the bisector of $\angle P$ can be written in the form $ax+2y+c=0$. Find $a+c$.

Indonesia MO Shortlist - geometry, g11

Given triangle $ABC$ and point $P$ on the circumcircle of triangle $ABC$. Suppose the line $CP$ intersects line $AB$ at point $E$ and line $BP$ intersect line $AC$ at point $F$. Suppose also the perpendicular bisector of $AB$ intersects $AC$ at point $K$ and the perpendicular bisector of $AC$ intersects $AB$ at point $J$. Prove that $$\left( \frac{CE}{BF}\right)^2= \frac{AJ \cdot JE }{ AK \cdot KF}$$

1986 AIME Problems, 11

The polynomial $1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ may be written in the form $a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$, where $y=x+1$ and thet $a_i$'s are constants. Find the value of $a_2$.

2007 Croatia Team Selection Test, 5

Tags: ratio , geometry , symmetry
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.

2001 Moldova National Olympiad, Problem 7

Tags: geometry , ratio
A line is drawn through a vertex of a triangle and cuts two of its middle lines (i.e. lines connecting the midpoints of two sides) in the same ratio. Determine this ratio.

2002 Czech-Polish-Slovak Match, 5

In an acute-angled triangle $ABC$ with circumcenter $O$, points $P$ and $Q$ are taken on sides $AC$ and $BC$ respectively such that $\frac{AP}{PQ} = \frac{BC}{AB}$ and $\frac{BQ}{PQ} =\frac{AC}{AB}$ . Prove that the points $O, P,Q,C$ lie on a circle.

2010 Today's Calculation Of Integral, 614

Evaluate $\int_0^1 \{x(1-x)\}^{\frac 32}dx.$ [i]2010 Hirosaki University School of Medicine entrance exam[/i]

2000 AMC 10, 13

There are $5$ yellow pegs, $4$ red pegs, $3$ green pegs, $2$ blue pegs, and $1$ orange peg on a triangular peg board. In how many ways can the pegs be placed so that no (horizontal) row or (vertical) column contains two pegs of the same color? [asy] unitsize(20); dot((0,0)); dot((1,0)); dot((2,0)); dot((3,0)); dot((4,0)); dot((0,1)); dot((1,1)); dot((2,1)); dot((3,1)); dot((0,2)); dot((1,2)); dot((2,2)); dot((0,3)); dot((1,3)); dot((0,4));[/asy] $\text{(A)}\ 0\qquad\text{(B)}\ 1\qquad\text{(C)}\ 5!\cdot4!\cdot3!\cdot2!\cdot1!\qquad\text{(D)}\ \frac{15!}{5!\cdot4!\cdot3!\cdot2!\cdot1!}\qquad\text{(E)}\ 15!$

1979 AMC 12/AHSME, 21

Tags: ratio , geometry
The length of the hypotenuse of a right triangle is $h$ , and the radius of the inscribed circle is $r$. The ratio of the area of the circle to the area of the triangle is $\textbf{(A) }\frac{\pi r}{h+2r}\qquad\textbf{(B) }\frac{\pi r}{h+r}\qquad\textbf{(C) }\frac{\pi}{2h+r}\qquad\textbf{(D) }\frac{\pi r^2}{r^2+h^2}\qquad\textbf{(E) }\text{none of these}$

2013 Thailand Mathematical Olympiad, 9

Let $ABCD$ be a convex quadrilateral, and let $M$ and$ N$ be midpoints of sides $AB$ and $CD$ respectively. Point $P$ is chosen on $CD$ so that $MP \perp CD$, and point $Q$ is chosen on $AB$ so that $NQ \perp AB$. Show that $AD \parallel BC$ if and only if $\frac{AB}{CD} =\frac{MP}{NQ}$ .

2019 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an acute-angled triangle. Let $D$ and $E$ be the feet of the altitudes on the sides $BC$ or $AC$. Points $F$ and $G$ are located on the lines $AD$ and $BE$ in such a way that$ \frac{AF}{FD}=\frac{BG}{GE}$. The line passing through $C$ and $F$ intersects $BE$ at point $H$, and the line passing through $C$ and $G$ intersects $AD$ at point $I$. Prove that points $F, G, H$ and $I$ lie on a circle. (Walther Janous)

2004 Bundeswettbewerb Mathematik, 3

Given two circles $k_1$ and $k_2$ which intersect at two different points $A$ and $B$. The tangent to the circle $k_2$ at the point $A$ meets the circle $k_1$ again at the point $C_1$. The tangent to the circle $k_1$ at the point $A$ meets the circle $k_2$ again at the point $C_2$. Finally, let the line $C_1C_2$ meet the circle $k_1$ in a point $D$ different from $C_1$ and $B$. Prove that the line $BD$ bisects the chord $AC_2$.

2013 Sharygin Geometry Olympiad, 5

Tags: ratio , geometry , midpoint
Points $E$ and $F$ lie on the sides $AB$ and $AC$ of a triangle $ABC$. Lines $EF$ and $BC$ meet at point $S$. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. The line passing through $A$ and parallel to $MN$ meets $BC$ at point $K$. Prove that $\frac{BK}{CK}=\frac{FS}{ES}$ . .

2008 BAMO, 4

A point $D$ lies inside triangle $ABC$. Let $A_1, B_1, C_1$ be the second intersection points of the lines $AD$, $BD$, and $CD$ with the circumcircles of $BDC$, $CDA$, and $ADB$, respectively. Prove that $$\frac{AD}{AA_1} + \frac{BD}{BA_1} + \frac{CD}{CC_1} = 1.$$

Indonesia Regional MO OSP SMA - geometry, 2010.1

Given triangle $ABC$. Suppose $P$ and $P_1$ are points on $BC, Q$ lies on $CA, R$ lies on $AB$, such that $$\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP_1}{P_1B}$$ Let $G$ be the centroid of triangle $ABC$ and $K = AP_1 \cap RQ$. Prove that points $P,G$, and $K$ are collinear.

1989 Flanders Math Olympiad, 2

When drawing all diagonals in a regular pentagon, one gets an smaller pentagon in the middle. What's the ratio of the areas of those pentagons?

2011 Canadian Open Math Challenge, 4

Tags: ratio
In the figure, AQPB and ASRC are squares, and AQS is an equilateral triangle. If QS  = 4 and BC  = x, what is the value of x? [asy] unitsize(16); pair A,B,C,P,Q,R,T; A=(3.4641016151377544, 2); B=(0, 0); C=(6.928203230275509, 0); P=(-1.9999999999999991, 3.464101615137755); Q=(1.4641016151377544, 5.464101615137754); R=(8.928203230275509, 3.4641016151377544); T=(5.464101615137754, 5.464101615137754); dot(A);dot(B);dot(C);dot(P); dot(Q);dot(R);dot(T); label("$A$", (3.4641016151377544, 2),E); label("$B$", (0, 0),S); label("$C$", (6.928203230275509, 0),S); label("$P$", (-1.9999999999999991, 3.464101615137755), W); label("$Q$", (1.4641016151377544, 5.464101615137754),N); label("$R$", (8.928203230275509, 3.4641016151377544),E); label("$S$", (5.464101615137754, 5.464101615137754),N); draw(B--C--A--B); draw(B--P--Q--A--B); draw(A--C--R--T--A); draw(Q--T--A--Q); label("$x$", (3.4641016151377544, 0), S); label("$4$", (Q+T)/2, N);[/asy]

2010 Contests, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2007 iTest Tournament of Champions, 5

Tags: ratio , geometry
Acute triangle $ABC$ has altitudes $AD$, $BE$, and $CF$. Point $D$ is projected onto $AB$ and $AC$ to points $D_c$ and $D_b$ respectively. Likewise, $E$ is projected to $E_a$ on $BC$ and $E_c$ on $AB$, and $F$ is projected to $F_a$ on $BC$ and $F_b$ on $AC$. Lines $D_bD_c$, $E_cE_a$, $F_aF_b$ bound a triangle of area $T_1$, and lines $E_cF_b$, $D_bE_a$, $F_aD_c$ bound a triangle of area $T_2$. What is the smallest possible value of the ratio $T_2/T_1$?

1979 AMC 12/AHSME, 23

The edges of a regular tetrahedron with vertices $A ,~ B,~ C$, and $D$ each have length one. Find the least possible distance between a pair of points $P$ and $Q$, where $P$ is on edge $AB$ and $Q$ is on edge $CD$. $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{3}{4}\qquad\textbf{(C) }\frac{\sqrt{2}}{2}\qquad\textbf{(D) }\frac{\sqrt{3}}{2}\qquad\textbf{(E) }\frac{\sqrt{3}}{3}$ [asy] size(150); import patterns; pair D=(0,0),C=(1,-1),B=(2.5,-0.2),A=(1,2),AA,BB,CC,DD,P,Q,aux; add("hatch",hatch()); //AA=new A and etc. draw(rotate(100,D)*(A--B--C--D--cycle)); AA=rotate(100,D)*A; BB=rotate(100,D)*D; CC=rotate(100,D)*C; DD=rotate(100,D)*B; aux=midpoint(AA--BB); draw(BB--DD); P=midpoint(AA--aux); aux=midpoint(CC--DD); Q=midpoint(CC--aux); draw(AA--CC,dashed); dot(P); dot(Q); fill(DD--BB--CC--cycle,pattern("hatch")); label("$A$",AA,W); label("$B$",BB,S); label("$C$",CC,E); label("$D$",DD,N); label("$P$",P,S); label("$Q$",Q,E); //Credit to TheMaskedMagician for the diagram [/asy]