This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2013 NIMO Problems, 2

Tags: ratio
At a certain school, the ratio of boys to girls is $1:3$. Suppose that: $\bullet$ Every boy has most $2013$ distinct girlfriends. $\bullet$ Every girl has at least $n$ boyfriends. $\bullet$ Friendship is mutual. Compute the largest possible value of $n$. [i]Proposed by Evan Chen[/i]

2019 Novosibirsk Oral Olympiad in Geometry, 3

A square sheet of paper $ABCD$ is folded straight in such a way that point $B$ hits to the midpoint of side $CD$. In what ratio does the fold line divide side $BC$?

2005 AMC 10, 21

Tags: ratio , probability
Forty slips are placed into a hat, each bearing a number $ 1$, $ 2$, $ 3$, $ 4$, $ 5$, $ 6$, $ 7$, $ 8$, $ 9$, or $ 10$, with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let $ p$ be the probability that all four slips bear the same number. Let $ q$ be the probability that two of the slips bear a number $ a$ and the other two bear a number $ b\not\equal{} a$. What is the value of $ q/p$? $ \textbf{(A)}\ 162\qquad \textbf{(B)}\ 180\qquad \textbf{(C)}\ 324\qquad \textbf{(D)}\ 360\qquad \textbf{(E)}\ 720$

2004 Denmark MO - Mohr Contest, 1

The width of rectangle $ABCD$ is twice its height, and the height of rectangle $EFCG$ is twice its width. The point $E$ lies on the diagonal $BD$. Which fraction of the area of the big rectangle is that of the small one? [img]https://1.bp.blogspot.com/-aeqefhbBh5E/XzcBjhgg7sI/AAAAAAAAMXM/B0qSgWDBuqc3ysd-mOitP1LarOtBdJJ3gCLcBGAsYHQ/s0/2004%2BMohr%2Bp1.png[/img]

2007 Germany Team Selection Test, 3

In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?

2022 Yasinsky Geometry Olympiad, 2

Tags: ratio , geometry , square , area
On the sides $AB$, $BC$, $CD$, $DA$ of the square $ABCD$ points $P, Q, R, T$ are chosen such that $$\frac{AP}{PB}=\frac{BQ}{QC}=\frac{CR}{RD}=\frac{DT}{TA}=\frac12.$$ The segments $AR$, $BT$, $CP$, $DQ$ in the intersection form the quadrilateral $KLMN$ (see figure). [img]https://cdn.artofproblemsolving.com/attachments/f/c/587a2358734c300fe7082c520f90c91f872b49.png[/img] a) Prove that $KLMN$ is a square. b) Find the ratio of the areas of the squares $KLMN$ and $ABCD$. (Alexander Shkolny)

2014 Saudi Arabia Pre-TST, 1.2

Tags: geometry , area , ratio
Let $D$ be the midpoint of side $BC$ of triangle $ABC$ and $E$ the midpoint of median $AD$. Line $BE$ intersects side $CA$ at $F$. Prove that the area of quadrilateral $CDEF$ is $\frac{5}{12}$ the area of triangle $ABC$.

1997 Estonia National Olympiad, 3

In triangle ABC, consider the sizes $\tan \angle A, \tan \angle B$, and $\tan \angle C$ into another such as the numbers $1, 2$ and $3$. Find the ratio of the sidelenghts $AC$ and $AB$ of the triangle.

2014 AMC 10, 23

A rectangular piece of paper whose length is $\sqrt3$ times the width has area $A$. The paper is divided into equal sections along the opposite lengths, and then a dotted line is drawn from the first divider to the second divider on the opposite side as shown. The paper is then folded flat along this dotted line to create a new shape with area $B$. What is the ratio $B:A$? [asy] import graph; size(6cm); real L = 0.05; pair A = (0,0); pair B = (sqrt(3),0); pair C = (sqrt(3),1); pair D = (0,1); pair X1 = (sqrt(3)/3,0); pair X2= (2*sqrt(3)/3,0); pair Y1 = (2*sqrt(3)/3,1); pair Y2 = (sqrt(3)/3,1); dot(X1); dot(Y1); draw(A--B--C--D--cycle, linewidth(2)); draw(X1--Y1,dashed); draw(X2--(2*sqrt(3)/3,L)); draw(Y2--(sqrt(3)/3,1-L)); [/asy] $ \textbf{(A)}\ 1:2\qquad\textbf{(B)}\ 3:5\qquad\textbf{(C)}\ 2:3\qquad\textbf{(D)}\ 3:4\qquad\textbf{(E)}\ 4:5 $

1970 IMO Shortlist, 8

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2018 Pan African, 2

A chess tournament is held with the participation of boys and girls. The girls are twice as many as boys. Each player plays against each other player exactly once. By the end of the tournament, there were no draws and the ratio of girl winnings to boy winnings was $\frac{7}{9}$. How many players took part at the tournament?

1954 AMC 12/AHSME, 11

Tags: ratio
A merchant placed on display some dresses, each with a marked price. He then posted a sign “$ \frac{1}{3}$ off on these dresses.” The cost of the dresses was $ \frac{3}{4}$ of the price at which he actually sold them. Then the ratio of the cost to the marked price was: $ \textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{1}{4} \qquad \textbf{(D)}\ \frac{2}{3} \qquad \textbf{(E)}\ \frac{3}{4}$

2014 Purple Comet Problems, 30

Three mutually tangent spheres each with radius $5$ sit on a horizontal plane. A triangular pyramid has a base that is an equilateral triangle with side length $6$, has three congruent isosceles triangles for vertical faces, and has height $12$. The base of the pyramid is parallel to the plane, and the vertex of the pyramid is pointing downward so that it is between the base and the plane. Each of the three vertical faces of the pyramid is tangent to one of the spheres at a point on the triangular face along its altitude from the vertex of the pyramid to the side of length $6$. The distance that these points of tangency are from the base of the pyramid is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.8)); pair X=(-.6,.4),A=(-.4,2),B=(-.7,1.85),C=(-1.1,2.05); picture spherex; filldraw(spherex,unitcircle,white); draw(spherex,(-1,0)..(-.2,-.2)..(1,0)^^(0,1)..(-.2,-.2)..(0,-1)); add(shift(-0.5,0.6)*spherex); filldraw(X--A--C--cycle,gray); draw(A--B--C^^X--B); add(shift(-1.5,0.2)*spherex); add(spherex); [/asy]

2009 AMC 10, 17

Rectangle $ ABCD$ has $ AB \equal{} 4$ and $ BC \equal{} 3$. Segment $ EF$ is constructed through $ B$ so that $ EF$ is perpendicular to $ DB$, and $ A$ and $ C$ lie on $ DE$ and $ DF$, respectively. What is $ EF$? $ \textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ \frac {125}{12}\qquad \textbf{(D)}\ \frac {103}{9}\qquad \textbf{(E)}\ 12$

1977 AMC 12/AHSME, 13

If $a_1,a_2,a_3,\dots$ is a sequence of positive numbers such that $a_{n+2}=a_na_{n+1}$ for all positive integers $n$, then the sequence $a_1,a_2,a_3,\dots$ is a geometric progression $\textbf{(A) }\text{for all positive values of }a_1\text{ and }a_2\qquad$ $\textbf{(B) }\text{if and only if }a_1=a_2\qquad$ $\textbf{(C) }\text{if and only if }a_1=1\qquad$ $\textbf{(D) }\text{if and only if }a_2=1\qquad $ $\textbf{(E) }\text{if and only if }a_1=a_2=1$

2010 Purple Comet Problems, 14

Let $ABCD$ be a trapezoid where $AB$ is parallel to $CD.$ Let $P$ be the intersection of diagonal $AC$ and diagonal $BD.$ If the area of triangle $PAB$ is $16,$ and the area of triangle $PCD$ is $25,$ find the area of the trapezoid.

2008 AMC 10, 16

Tags: geometry , ratio
Points $ A$ and $ B$ lie on a circle centered at $ O$, and $ \angle AOB\equal{}60^\circ$. A second circle is internally tangent to the first and tangent to both $ \overline{OA}$ and $ \overline{OB}$. What is the ratio of the area of the smaller circle to that of the larger circle? $ \textbf{(A)}\ \frac{1}{16} \qquad \textbf{(B)}\ \frac{1}{9} \qquad \textbf{(C)}\ \frac{1}{8} \qquad \textbf{(D)}\ \frac{1}{6} \qquad \textbf{(E)}\ \frac{1}{4}$

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

2010 Belarus Team Selection Test, 2.1

Tags: product , ratio , angle , geometry
Point $D$ is marked inside a triangle $ABC$ so that $\angle ADC = \angle ABC + 60^o$, $\angle CDB =\angle CAB + 60^o$, $\angle BDA = \angle BCA + 60^o$. Prove that $AB \cdot CD = BC \cdot AD = CA \cdot BD$. (A. Levin)

1990 AMC 8, 3

What fraction of the square is shaded? [asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey);[/asy] $ \text{(A)}\ \frac{1}{3}\qquad\text{(B)}\ \frac{2}{5}\qquad\text{(C)}\ \frac{5}{12}\qquad\text{(D)}\ \frac{3}{7}\qquad\text{(E)}\ \frac{1}{2} $

2024 Dutch IMO TST, 2

Let $ABC$ be a triangle. A point $P$ lies on the segment $BC$ such that the circle with diameter $BP$ passes through the incenter of $ABC$. Show that $\frac{BP}{PC}=\frac{c}{s-c}$ where $c$ is the length of segment $AB$ and $2s$ is the perimeter of $ABC$.

2011 Morocco National Olympiad, 4

Let $ABC$ be a triangle with area $1$ and $P$ the middle of the side $[BC]$. $M$ and $N$ are two points of $[AB]-\left \{ A,B \right \} $ and $[AC]-\left \{ A,C \right \}$ respectively such that $AM=2MB$ and$CN=2AN$. The two lines $(AP)$ and $(MN)$ intersect in a point $D$. Find the area of the triangle $ADN$.

2010 Postal Coaching, 4

Tags: geometry , ratio
Let $C_1 , C_2$ be two circles in the plane intersecting at two distinct points. Let $P$ be the midpoint of a variable chord $AB$ of $C_2$ with the property that the circle on $AB$ as diameter meets $C_1$ at a point $T$ such that $P T$ is tangent to $C_1$ . Find the locus of $P$ .

1989 Spain Mathematical Olympiad, 2

Points $A' ,B' ,C'$ on the respective sides $BC,CA,AB$ of triangle $ABC$ satisfy $\frac{AC' }{AB} = \frac{BA' }{BC} = \frac{CB' }{CA} = k$. The lines $AA' ,BB' ,CC' $ form a triangle $A_1B_1C_1$ (possibly degenerate). Given $k$ and the area $S$ of $\triangle ABC$, compute the area of $\triangle A_1B_1C_1$.