This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2009 AMC 12/AHSME, 12

The fifth and eighth terms of a geometric sequence of real numbers are $ 7!$ and $ 8!$ respectively. What is the first term? $ \textbf{(A)}\ 60\qquad \textbf{(B)}\ 75\qquad \textbf{(C)}\ 120\qquad \textbf{(D)}\ 225\qquad \textbf{(E)}\ 315$

1961 Kurschak Competition, 1

Given any four distinct points in the plane, show that the ratio of the largest to the smallest distance between two of them is at least $\sqrt2$.

2013 India PRMO, 19

In a triangle $ABC$ with $\angle BC A = 90^o$, the perpendicular bisector of $AB$ intersects segments $AB$ and $AC$ at $X$ and $Y$, respectively. If the ratio of the area of quadrilateral $BXYC$ to the area of triangle $ABC$ is $13 : 18$ and $BC = 12$ then what is the length of $AC$?

2014 AIME Problems, 7

Let $w$ and $z$ be complex numbers such that $|w| = 1$ and $|z| = 10$. Let $\theta = \arg\left(\tfrac{w-z}{z}\right)$. The maximum possible value of $\tan^2 \theta$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. (Note that $\arg(w)$, for $w \neq 0$, denotes the measure of the angle that the ray from $0$ to $w$ makes with the positive real axis in the complex plane.

1988 IMO Longlists, 23

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

2007 Germany Team Selection Test, 2

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

1997 AMC 8, 15

Tags: geometry , ratio
Each side of the large square in the figure is trisected (divided into three equal parts). The corners of an inscribed square are at these trisection points, as shown. The ratio of the area of the inscribed square to the area of the large square is [asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((1,0)--(1,0.2)); draw((2,0)--(2,0.2)); draw((3,1)--(2.8,1)); draw((3,2)--(2.8,2)); draw((1,3)--(1,2.8)); draw((2,3)--(2,2.8)); draw((0,1)--(0.2,1)); draw((0,2)--(0.2,2)); draw((2,0)--(3,2)--(1,3)--(0,1)--cycle); [/asy] $\textbf{(A)}\ \dfrac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \dfrac{5}{9} \qquad \textbf{(C)}\ \dfrac{2}{3} \qquad \textbf{(D)}\ \dfrac{\sqrt{5}}{3} \qquad \textbf{(E)}\ \dfrac{7}{9}$

2017 AMC 10, 19

Tags: ratio , geometry
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB' = 3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC' = 3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA' = 3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$? $\textbf{(A) }9:1\qquad\textbf{(B) }16:1\qquad\textbf{(C) }25:1\qquad\textbf{(D) }36:1\qquad\textbf{(E) }37:1$

1971 AMC 12/AHSME, 18

Tags: ratio , quadratic
The current in a river is flowing steadily at $3$ miles per hour. A motor boat which travels at a constant rate in still water goes downstream $4$ miles and then returns to its starting point. The trip takes one hour, excluding the time spent in turning the boat around. The ratio of the downstream to the upstream rate is $\textbf{(A) }4:3\qquad\textbf{(B) }3:2\qquad\textbf{(C) }5:3\qquad\textbf{(D) }2:1\qquad \textbf{(E) }5:2$

2009 China Team Selection Test, 1

Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$

2019 Iran RMM TST, 1

Tags: ratio , geometry
Let $ABC $ be a triangle and $D $ be the feet of $A $-altitude.\\ $E,F $ are defined on segments $AD,BC $,respectively such that $\frac {AE}{DE}=\frac{BF}{CF} $.\\ Assume that $G $ lies on $AF $ such that $BG\perp AF $.Prove that $EF $ is tangent to the circumcircle of $CFG $. [i]Proposed by Mehdi Etesami Fard[/i]

1962 AMC 12/AHSME, 15

Given triangle $ ABC$ with base $ AB$ fixed in length and position. As the vertex $ C$ moves on a straight line, the intersection point of the three medians moves on: $ \textbf{(A)}\ \text{a circle} \qquad \textbf{(B)}\ \text{a parabola} \qquad \textbf{(C)}\ \text{an ellipse} \qquad \textbf{(D)}\ \text{a straight line} \qquad \textbf{(E)}\ \text{a curve here not listed}$

2009 Purple Comet Problems, 18

On triangle $ABC$ let $D$ be the point on $AB$ so that $CD$ is an altitude of the triangle, and $E$ be the point on $BC$ so that $AE$ bisects angle $BAC.$ Let $G$ be the intersection of $AE$ and $CD,$ and let point $F$ be the intersection of side $AC$ and the ray $BG.$ If $AB$ has length $28,$ $AC$ has length $14,$ and $CD$ has length $10,$ then the length of $CF$ can be written as $\tfrac{k-m\sqrt{p}}{n}$ where $k, m, n,$ and $p$ are positive integers, $k$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $k - m + n + p.$

2004 IberoAmerican, 2

In the plane are given a circle with center $ O$ and radius $ r$ and a point $ A$ outside the circle. For any point $ M$ on the circle, let $ N$ be the diametrically opposite point. Find the locus of the circumcenter of triangle $ AMN$ when $ M$ describes the circle.

2008 China Team Selection Test, 1

Let $P$ be an arbitrary point inside triangle $ABC$, denote by $A_{1}$ (different from $P$) the second intersection of line $AP$ with the circumcircle of triangle $PBC$ and define $B_{1},C_{1}$ similarly. Prove that $\left(1 \plus{} 2\cdot\frac {PA}{PA_{1}}\right)\left(1 \plus{} 2\cdot\frac {PB}{PB_{1}}\right)\left(1 \plus{} 2\cdot\frac {PC}{PC_{1}}\right)\geq 8$.

2011 AMC 8, 3

Tags: ratio
Extend the square pattern of $8$ black and $17$ white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern? [asy] filldraw((0,0)--(5,0)--(5,5)--(0,5)--cycle,white,black); filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle,mediumgray,black); filldraw((2,2)--(3,2)--(3,3)--(2,3)--cycle,white,black); draw((4,0)--(4,5)); draw((3,0)--(3,5)); draw((2,0)--(2,5)); draw((1,0)--(1,5)); draw((0,4)--(5,4)); draw((0,3)--(5,3)); draw((0,2)--(5,2)); draw((0,1)--(5,1));[/asy] $ \textbf{(A)}\ 8:17\qquad\textbf{(B)}\ 25:49\qquad\textbf{(C)}\ 36:25\qquad\textbf{(D)}\ 32:17\qquad\textbf{(E)}\ 36:17 $

2005 District Olympiad, 4

In the triangle $ABC$ let $AD$ be the interior angle bisector of $\angle ACB$, where $D\in AB$. The circumcenter of the triangle $ABC$ coincides with the incenter of the triangle $BCD$. Prove that $AC^2 = AD\cdot AB$.

2008 AMC 12/AHSME, 13

Tags: geometry , ratio
Points $ A$ and $ B$ lie on a circle centered at $ O$, and $ \angle AOB\equal{}60^\circ$. A second circle is internally tangent to the first and tangent to both $ \overline{OA}$ and $ \overline{OB}$. What is the ratio of the area of the smaller circle to that of the larger circle? $ \textbf{(A)}\ \frac{1}{16} \qquad \textbf{(B)}\ \frac{1}{9} \qquad \textbf{(C)}\ \frac{1}{8} \qquad \textbf{(D)}\ \frac{1}{6} \qquad \textbf{(E)}\ \frac{1}{4}$

2011 AIME Problems, 1

Jar A contains four liters of a solution that is $45\%$ acid. Jar B contains five liters of a solution that is $48\%$ acid. Jar C contains one liter of a solution that is $k\%$ acid. From jar C, $\tfrac{m}{n}$ liters of the solution is added to jar A, and the remainder of the solution in jar C is added to jar B. At the end, both jar A and jar B contain solutions that are $50\%$ acid. Given that $m$ and $n$ are relatively prime positive integers, find $k+m+n$.

2005 IberoAmerican Olympiad For University Students, 1

Let $P(x,y)=(x^2y^3,x^3y^5)$, $P^1=P$ and $P^{n+1}=P\circ P^n$. Also, let $p_n(x)$ be the first coordinate of $P^n(x,x)$, and $f(n)$ be the degree of $p_n(x)$. Find \[\lim_{n\to\infty}f(n)^{1/n}\]

1997 Canada National Olympiad, 5

Write the sum $\sum_{i=0}^{n}{\frac{(-1)^i\cdot\binom{n}{i}}{i^3 +9i^2 +26i +24}}$ as the ratio of two explicitly defined polynomials with integer coefficients.

2005 Tournament of Towns, 4

Tags: geometry , ratio
On all three sides of a right triangle $ABC$ external squares are constructed; their centers denoted by $D$, $E$, $F$. Show that the ratio of the area of triangle $DEF$ to the area of triangle $ABC$ is: a) [i](2 points)[/i] greater than $1$; b) [i](2 points)[/i] at least $2$.

2008 Iran Team Selection Test, 9

$ I_a$ is the excenter of the triangle $ ABC$ with respect to $ A$, and $ AI_a$ intersects the circumcircle of $ ABC$ at $ T$. Let $ X$ be a point on $ TI_a$ such that $ XI_a^2\equal{}XA.XT$. Draw a perpendicular line from $ X$ to $ BC$ so that it intersects $ BC$ in $ A'$. Define $ B'$ and $ C'$ in the same way. Prove that $ AA'$, $ BB'$ and $ CC'$ are concurrent.

2000 All-Russian Olympiad Regional Round, 10.3

Given a parallelogram $ABCD$ with angle $A$ equal to $60^o$. Point $O$ is the the center of a circle circumscribed around triangle $ABD$. Line $AO$ intersects the bisector of the exterior angle $C$ at point $K$. Find the ratio $AO/OK$.

2010 Singapore MO Open, 3

Suppose that $a_1,...,a_{15}$ are prime numbers forming an arithmetic progression with common difference $d > 0$ if $a_1 > 15$ show that $d > 30000$