Found problems: 1342
2009 AMC 10, 14
Four congruent rectangles are placed as shown. The area of the outer square is $ 4$ times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt));
path p=(1,1)--(-2,1)--(-2,2)--(1,2);
draw(p);
draw(rotate(90)*p);
draw(rotate(180)*p);
draw(rotate(270)*p);[/asy]$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \sqrt {10} \qquad \textbf{(C)}\ 2 \plus{} \sqrt2 \qquad \textbf{(D)}\ 2\sqrt3 \qquad \textbf{(E)}\ 4$
2011 Saudi Arabia Pre-TST, 2.4
Let $ABCD$ be a rectangle of center $O$, such that $\angle DAC = 60^o$. The angle bisector of $\angle DAC$ meets $DC$ at $S$. Lines $OS$ and $AD$ meet at $L$ and lines $BL$ and $AC$ meet at $M$. Prove that lines $SM$ and $CL$ are parallel.
2016 Costa Rica - Final Round, LR1
With $21$ tiles, some white and some black, a $3 \times 7$ rectangle is formed. Show that there are always four tokens of the same color located at the vertices of a rectangle.
1975 All Soviet Union Mathematical Olympiad, 208
a) Given a big square consisting of $7\times 7$ squares. You should mark the centres of $k$ points in such a way, that no quadruple of the marked points will be the vertices of a rectangle with the sides parallel to the sides of the given squares. What is the greatest $k$ such that the problem has solution?
b) The same problem for $13\times 13$ square.
2011 AMC 10, 18
Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?
$ \textbf{(A)}\ 15 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 45 \qquad
\textbf{(D)}\ 60 \qquad
\textbf{(E)}\ 75 $
2006 Taiwan TST Round 1, 2
Let $p,q$ be two distinct odd primes. Calculate
$\displaystyle \sum_{j=1}^{\frac{p-1}{2}}\left \lfloor \frac{qj}{p}\right \rfloor +\sum_{j=1}^{\frac{q-1}{2}}\left \lfloor \frac{pj}{q}\right\rfloor$.
2009 Iran MO (2nd Round), 1
We have a $ (n+2)\times n $ rectangle and we’ve divided it into $ n(n+2) \ \ 1\times1 $ squares. $ n(n+2) $ soldiers are standing on the intersection points ($ n+2 $ rows and $ n $ columns). The commander shouts and each soldier stands on its own location or gaits one step to north, west, east or south so that he stands on an adjacent intersection point. After the shout, we see that the soldiers are standing on the intersection points of a $ n\times(n+2) $ rectangle ($ n $ rows and $ n+2 $ columns) such that the first and last row are deleted and 2 columns are added to the right and left (To the left $1$ and $1$ to the right).
Prove that $ n $ is even.
2003 AMC 8, 8
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Who gets the fewest cookies from one batch of cookie dough?
$ \textbf{(A)}\ \text{Art}\qquad\textbf{(B)}\ \text{Roger}\qquad\textbf{(C)}\ \text{Paul}\qquad\textbf{(D)}\ \text{Trisha}\qquad\textbf{(E)}\ \text{There is a tie for fewest.}$
1994 India National Olympiad, 5
A circle passes through the vertex of a rectangle $ABCD$ and touches its sides $AB$ and $AD$ at $M$ and $N$ respectively. If the distance from $C$ to the line segment $MN$ is equal to $5$ units, find the area of rectangle $ABCD$.
2006 Oral Moscow Geometry Olympiad, 2
Determine the ratio of the sides of the rectangle circumscribed around a corner of five cells (see figure).
(M. Evdokimov)
[img]https://cdn.artofproblemsolving.com/attachments/f/f/9c3e345f33cabbbd83f65d7240aac29a163b19.png[/img]
2013 Purple Comet Problems, 23
The diagram below shows the regular hexagon $BCEGHJ$ surrounded by the rectangle $ADFI$. Let $\theta$ be the measure of the acute angle between the side $\overline{EG}$ of the hexagon and the diagonal of the rectangle $\overline{AF}$. There are relatively prime positive integers $m$ and $n$ so that $\sin^2\theta = \tfrac{m}{n}$. Find $m + n$.
[asy]
import graph; size(3.2cm);
real labelscalefactor = 0.5;
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((-1,3)--(-1,2)--(-0.13,1.5)--(0.73,2)--(0.73,3)--(-0.13,3.5)--cycle);
draw((-1,3)--(-1,2));
draw((-1,2)--(-0.13,1.5));
draw((-0.13,1.5)--(0.73,2));
draw((0.73,2)--(0.73,3));
draw((0.73,3)--(-0.13,3.5));
draw((-0.13,3.5)--(-1,3));
draw((-1,3.5)--(0.73,3.5));
draw((0.73,3.5)--(0.73,1.5));
draw((-1,1.5)--(0.73,1.5));
draw((-1,3.5)--(-1,1.5));
label("$ A $",(-1.4,3.9),SE*labelscalefactor);
label("$ B $",(-1.4,3.28),SE*labelscalefactor);
label("$ C $",(-1.4,2.29),SE*labelscalefactor);
label("$ D $",(-1.4,1.45),SE*labelscalefactor);
label("$ E $",(-0.3,1.4),SE*labelscalefactor);
label("$ F $",(0.8,1.45),SE*labelscalefactor);
label("$ G $",(0.8,2.24),SE*labelscalefactor);
label("$ H $",(0.8,3.26),SE*labelscalefactor);
label("$ I $",(0.8,3.9),SE*labelscalefactor);
label("$ J $",(-0.25,3.9),SE*labelscalefactor); [/asy]
2017 Israel National Olympiad, 3
A large collection of congruent right triangles is given, each with side length 3,4,5. Find the maximal number of such triangles you can place inside a 20x20 square, with no two triangles intersecting (in their interiors).
1998 Slovenia National Olympiad, Problem 3
A point $E$ on side $CD$ of a rectangle $ABCD$ is such that $\triangle DBE$ is isosceles and $\triangle ABE$ is right-angled. Find the ratio between the side lengths of the rectangle.
2010 Postal Coaching, 5
A point $P$ lies on the internal angle bisector of $\angle BAC$ of a triangle $\triangle ABC$. Point $D$ is the midpoint of $BC$ and $PD$ meets the external angle bisector of $\angle BAC$ at point $E$. If $F$ is the point such that $PAEF$ is a rectangle then prove that $PF$ bisects $\angle BFC$ internally or externally.
2013 HMIC, 5
I'd really appreciate help on this.
(a) Given a set $X$ of points in the plane, let $f_{X}(n)$ be the largest possible area of a polygon with at most $n$ vertices, all of which are points of $X$. Prove that if $m, n$ are integers with $m \geq n > 2$ then $f_{X}(m) + f_{X}(n) \geq f_{X}(m + 1) + f_{X}(n - 1)$.
(b) Let $P_0$ be a $1 \times 2$ rectangle (including its interior) and inductively define the polygon $P_i$ to be the result of folding $P_{i-1}$ over some line that cuts $P_{i-1}$ into two connected parts. The diameter of a polygon $P_i$ is the maximum distance between two points of $P_i$. Determine the smallest possible diameter of $P_{2013}$.
2000 Balkan MO, 3
How many $1 \times 10\sqrt 2$ rectangles can be cut from a $50\times 90$ rectangle using cuts parallel to its edges?
1985 IMO Longlists, 35
We call a coloring $f$ of the elements in the set $M = \{(x, y) | x = 0, 1, \dots , kn - 1; y = 0, 1, \dots , ln - 1\}$ with $n$ colors allowable if every color appears exactly $k$ and $ l$ times in each row and column and there are no rectangles with sides parallel to the coordinate axes such that all the vertices in $M$ have the same color. Prove that every allowable coloring $f$ satisfies $kl \leq n(n + 1).$
2009 ISI B.Math Entrance Exam, 7
Compute the maximum area of a rectangle which can be inscribed in a triangle of area $M$.
2006 May Olympiad, 2
A rectangle of paper of $3$ cm by $9$ cm is folded along a straight line, making two opposite vertices coincide. In this way a pentagon is formed. Calculate it's area.
2017 NIMO Problems, 1
In the diagram below, how many rectangles can be drawn using the grid lines which contain none of the letters $N$, $I$, $M$, $O$?
[asy]
size(4cm);
for(int i=0;i<6;++i)draw((i,0)--(i,5)^^(0,i)--(5,i));
label("$N$", (1.5, 2.5));
label("$I$", (2.5, 3.5));
label("$M$", (3.5, 2.5));
label("$O$", (2.5, 1.5));
[/asy]
[i]Proposed by Michael Tang[/i]
2013 Baltic Way, 15
Four circles in a plane have a common center. Their radii form a strictly increasing arithmetic progression. Prove that there is no square with each vertex lying on a different circle.
2009 Indonesia TST, 1
Given an $ n\times n$ chessboard.
a) Find the number of rectangles on the chessboard.
b) Assume there exists an $ r\times r$ square (label $ B$) with $ r<n$ which is located on the upper left corner of the board. Define "inner border" of $ A$ as the border of $ A$ which is not the border of the chessboard. How many rectangles in $ B$ that touch exactly one inner border of $ B$?
2009 Princeton University Math Competition, 1
A rectangular piece of paper $ABCD$ has sides of lengths $AB = 1$, $BC = 2$. The rectangle is folded in half such that $AD$ coincides with $BC$ and $EF$ is the folding line. Then fold the paper along a line $BM$ such that the corner $A$ falls on line $EF$. How large, in degrees, is $\angle ABM$?
[asy]
size(180); pathpen = rgb(0,0,0.6)+linewidth(1); pointpen = black+linewidth(3); pointfontpen = fontsize(10); pen dd = rgb(0,0,0.6) + linewidth(0.7) + linetype("4 4"), dr = rgb(0.8,0,0), dg = rgb(0,0.6,0), db = rgb(0,0,0.6)+linewidth(1);
pair A=(0,1), B=(0,0), C=(2,0), D=(2,1), E=A/2, F=(2,.5), M=(1/3^.5,1), N=reflect(B,M)*A;
D(B--M--D("N",N,NE)--B--D("C",C,SE)--D("D",D,NE)--M); D(D("M",M,plain.N)--D("A",A,NW)--D("B",B,SW),dd); D(D("E",E,W)--D("F",F,plain.E),dd);
[/asy]
2009 Singapore Team Selection Test, 3
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
1985 Tournament Of Towns, (096) 5
A square is divided into rectangles.
A "chain" is a subset $K$ of the set of these rectangles such that there exists a side of the square which is covered by projections of rectangles of $K$ and such that no point of this side is a projection of two inner points of two inner points of two different rectangles of $K$.
(a) Prove that every two rectangles in such a division are members of a certain "chain".
(b) Solve the similar problem for a cube, divided into rectangular parallelopipeds (in the definition of chain , replace "side" by"edge") .
(A.I . Golberg, V.A. Gurevich)