This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2023 May Olympiad, 4

Matías has a rectangular sheet of paper $ABCD$, with $AB<AD$.Initially, he folds the sheet along a straight line $AE$, where $E$ is a point on the side $DC$ , so that vertex $D$ is located on side $BC$, as shown in the figure. Then folds the sheet again along a straight line $AF$, where $F$ is a point on side $BC$, so that vertex $B$ lies on the line $AE$; and finally folds the sheet along the line $EF$. Matías observed that the vertices $B$ and $C$ were located on the same point of segment $AE$ after making the folds. Calculate the measure of the angle $\angle DAE$. [img]https://cdn.artofproblemsolving.com/attachments/0/9/b9ab717e1806c6503a9310ee923f20109da31a.png[/img]

2013 India PRMO, 12

Let $ABC$ be an equilateral triangle. Let $P$ and $S$ be points on $AB$ and $AC$, respectively, and let $Q$ and $R$ be points on $BC$ such that $PQRS$ is a rectangle. If $PQ = \sqrt3 PS$ and the area of $PQRS$ is $28\sqrt3$, what is the length of $PC$?

2019 Yasinsky Geometry Olympiad, p2

Given the equilateral triangle $ABC$. It is known that the radius of the inscribed circle is in this triangle is equal to $1$. The rectangle $ABDE$ is such that point $C$ belongs to its side $DE$. Find the radius of the circle circumscribed around the rectangle $ABDE$.

2001 AMC 10, 11

Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains $ 8$ unit squares. The second ring contains $ 16$ unit squares. If we continue this process, the number of unit squares in the $ 100^\text{th}$ ring is $ \textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404$ [asy]unitsize(3mm); defaultpen(linewidth(1pt)); fill((2,2)--(2,7)--(7,7)--(7,2)--cycle, mediumgray); fill((3,3)--(6,3)--(6,6)--(3,6)--cycle, gray); fill((4,4)--(5,4)--(5,5)--(4,5)--cycle, black); for(real i=0; i<=9; ++i) { draw((i,0)--(i,9)); draw((0,i)--(9,i)); }[/asy]

2013 Sharygin Geometry Olympiad, 7

In the plane, four points are marked. It is known that these points are the centers of four circles, three of which are pairwise externally tangent, and all these three are internally tangent to the fourth one. It turns out, however, that it is impossible to determine which of the marked points is the center of the fourth (the largest) circle. Prove that these four points are the vertices of a rectangle.

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2017 China National Olympiad, 3

Consider a rectangle $R$ partitioned into $2016$ smaller rectangles such that the sides of each smaller rectangle is parallel to one of the sides of the original rectangle. Call the corners of each rectangle a vertex. For any segment joining two vertices, call it basic if no other vertex lie on it. (The segments must be part of the partitioning.) Find the maximum/minimum possible number of basic segments over all possible partitions of $R$.

2004 Italy TST, 1

At the vertices $A, B, C, D, E, F, G, H$ of a cube, $2001, 2002, 2003, 2004, 2005, 2008, 2007$ and $2006$ stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at $A, B, \ldots , H$ can be obtained? $(\text{a})\quad 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2005;$ $(\text{b})\quad 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007;$ $(\text{c})\quad 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.$

2002 AIME Problems, 2

The diagram shows twenty congruent circles arranged in three rows and enclosed in a rectangle. The circles are tangent to one another and to the sides of the rectangle as shown in the diagram. The ratio of the longer dimension of the rectangle to the shorter dimension can be written as $\frac{1}{2}\left(\sqrt{p}-q\right),$ where $p$ and $q$ are positive integers. Find $p+q.$ [asy] size(250);real x=sqrt(3); int i; draw(origin--(14,0)--(14,2+2x)--(0,2+2x)--cycle); for(i=0; i<7; i=i+1) { draw(Circle((2*i+1,1), 1)^^Circle((2*i+1,1+2x), 1)); } for(i=0; i<6; i=i+1) { draw(Circle((2*i+2,1+x), 1)); }[/asy]

2008 Cuba MO, 9

Today was realized the National Olimpiad in Cuba, this is the 3rd problem of the second day: Prof that we can color the lattice points in the plane with two color so that every rectangle with vertices in the lattice points and edges parallels to the co-ordinate axis that have area 2^n is not monocromatic [/img]

1999 Tournament Of Towns, 5

A square is cut into $100$ rectangles by $9$ straight lines parallel to one of the sides and $9$ lines parallel to another. If exactly $9$ of the rectangles are actually squares, prove that at least two of these $9$ squares are of the same size . (V Proizvolov)

2022 JHMT HS, 5

Three congruent equilateral triangles $T_1$, $T_2$, and $T_3$ are stacked from left to right inside rectangle $JHMT$ such that the bottom left vertex of $T_1$ is $T$, the bottom side of $T_1$ lies on $\overline{MT}$, the bottom left vertex of $T_2$ is the midpoint of a side of $T_1$, the bottom left vertex of $T_3$ is the midpoint of a side of $T_2$, and the other two vertices of $T_3$ lie on $\overline{JH}$ and $\overline{HM}$, as shown below. Given that rectangle $JHMT$ has area $2022$, find the area of any one of the triangles $T_1$, $T_2$, or $T_3$. [asy] unitsize(0.111111111111111111cm); real s = sqrt(4044/sqrt(75)); real l = 5s/2; real w = s * sqrt(3); pair J,H,M,T,V1,V2,V3,V4,V5,V6,V7,V8,C1,C2,C3; J = (0,w); H = (l,w); M = (l,0); T = (0,0); V1 = (s,0); V2 = (s/2,s * sqrt(3)/2); V3 = (V1+V2)/2; V4 = (3 * s/4+s,s * sqrt(3)/4); V5 = (3 * s/4+s/2,s * sqrt(3)/4+s * sqrt(3)/2); V6 = (V4+V5)/2; V7 = (l,s * sqrt(3)/4+s * sqrt(3)/4); V8 = (l-s/2,w); C1 = (T+V1+V2)/3; C2 = (V3+V4+V5)/3; C3 = (V6+V7+V8)/3; draw(J--H--M--T--cycle); draw(V1--V2--T); draw(V3--V4--V5--cycle); draw(V6--V7--V8--cycle); label("$J$", J, NW); label("$H$", H, NE); label("$M$", M, SE); label("$T$", T, SW); label("$T_1$", C1); label("$T_2$", C2); label("$T_3$", C3); [/asy]

2009 Croatia Team Selection Test, 2

Every natural number is coloured in one of the $ k$ colors. Prove that there exist four distinct natural numbers $ a, b, c, d$, all coloured in the same colour, such that $ ad \equal{} bc$, $ \displaystyle \frac b a$ is power of 2 and $ \displaystyle \frac c a$ is power of 3.

2000 AIME Problems, 2

Let $u$ and $v$ be integers satisfying $0<v<u.$ Let $A=(u,v),$ let $B$ be the reflection of $A$ across the line $y=x,$ let $C$ be the reflection of $B$ across the y-axis, let $D$ be the reflection of $C$ across the x-axis, and let $E$ be the reflection of $D$ across the y-axis. The area of pentagon $ABCDE$ is 451. Find $u+v.$

2024 Ecuador NMO (OMEC), 3

Let $\triangle ABC$ with $\angle BAC=120 ^\circ$. Let $D, E, F$ points on sides $BC, CA, AB$, respectively, such that $AD, BE, CF$ are angle bisectors on $\triangle ABC$. \\ Prove that $\triangle ABC$ is isosceles if and only if $\triangle DEF$ is right-angled isosceles.

1988 Austrian-Polish Competition, 9

For a rectangle $R$ with integral side lengths, denote by $D(a, b)$ the number of ways of covering $R$ by congruent rectangles with integral side lengths formed by a family of cuts parallel to one side of $R$. Determine the perimeter $P$ of the rectangle $R$ for which $\frac{D(a,b)}{a+b}$ is maximal.

2019 Kosovo National Mathematical Olympiad, 3

Let $ABCD$ be a rectangle with $AB>BC$. Let points $E,F$ be on side $CD$ such that $CE=ED$ and $BC=CF$. Show that if $AC$ is prependicular to $BE$ then $AB=BF$.

2017 Saudi Arabia BMO TST, 4

Let $p$ be a prime number and a table of size $(p^2+ p+1)\times (p^2+p + 1)$ which is divided into unit cells. The way to color some cells of this table is called nice if there are no four colored cells that form a rectangle (the sides of rectangle are parallel to the sides of given table). 1. Let $k$ be the number of colored cells in some nice coloring way. Prove that $k \le (p + 1)(p^2 + p + 1)$. Denote this number as $k_{max}$. 2. Prove that all ordered tuples $(a, b, c)$ with $0 \le a, b, c < p$ and $a + b + c > 0$ can be partitioned into $p^2 + p + 1$ sets $S_1, S_2, .. . S_{p^2+p+1}$ such that two tuples $(a_1, b_1, c_1)$ and $(a_2, b_2, c_2)$ belong to the same set if and only if $a_1 \equiv ka_2, b_1 \equiv kb_2, c_1 \equiv kc_2$ (mod $p$) for some $k \in \{1,2, 3, ... , p - 1\}$. 3. For $1 \le i, j \le p^2+p+1$, if there exist $(a_1, b_1, c_1) \in S_i$ and $(a_2, b_2, c_2) \in S_j$ such that $a_1a_2 + b_1b_2 + c_1c_2 \equiv 0$ (mod $p$), we color the cell $(i, j)$ of the given table. Prove that this coloring way is nice with $k_{max}$ colored cells

2013 Macedonian Team Selection Test, Problem 5

Let $ABC$ be a triangle with given sides $a,b,c$. Determine the minimal possible length of the diagonal of an inscribed rectangle in this triangle. [i]Note: A rectangle is inscribed in the triangle if two of its consecutive vertices lie on one side of the triangle, while the other two vertices lie on the other two sides of the triangle. [/i]

1997 AIME Problems, 2

The nine horizontal and nine vertical lines on an $8\times8$ checkerboard form $r$ rectangles, of which $s$ are squares. The number $s/r$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2014 AMC 10, 22

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$? $ \textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20 $

2010 Slovenia National Olympiad, 5

Let $ABCD$ be a square with the side of $20$ units. Amir divides this square into $400$ unit squares. Reza then picks $4$ of the vertices of these unit squares. These vertices lie inside the square $ABCD$ and define a rectangle with the sides parallel to the sides of the square $ABCD.$ There are exactly $24$ unit squares which have at least one point in common with the sides of this rectangle. Find all possible values for the area of a rectangle with these properties. [hide="Note"][i]Note:[/i] Vid changed to Amir, and Eva change to Reza![/hide]

Brazil L2 Finals (OBM) - geometry, 2001.1

A sheet of rectangular $ABCD$ paper, of area $1$, is folded along its diagonal $AC$ and then unfolded, then it is bent so that vertex $A$ coincides with vertex $C$ and then unfolded, leaving the crease $MN$, as shown below. a) Show that the quadrilateral $AMCN$ is a rhombus. b) If the diagonal $AC$ is twice the width $AD$, what is the area of the rhombus $AMCN$? [img]https://2.bp.blogspot.com/-TeQ0QKYGzOQ/Xp9lQcaLbsI/AAAAAAAAL2E/JLXwEIPSr4U79tATcYzmcJjK5bGA6_RqACK4BGAYYCw/s400/2001%2Baomb%2Bl2.png[/img]

2003 Bulgaria Team Selection Test, 1

Cut $2003$ disjoint rectangles from an acute-angled triangle $ABC$, such that any of them has a parallel side to $AB$ and the sum of their areas is maximal.

2018 Germany Team Selection Test, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]