Found problems: 1342
1997 ITAMO, 1
An infinite rectangular stripe of width $3$ cm is folded along a line. What is the minimum possible area of the region of overlapping?
2010 Contests, 3
We call a rectangle of the size $1 \times 2$ a domino. Rectangle of the $2 \times 3$ removing two opposite (under center of rectangle) corners we call tetramino. These figures can be rotated.
It requires to tile rectangle of size $2008 \times 2010$ by using dominoes and tetraminoes. What is the minimal number of dominoes should be used?
Novosibirsk Oral Geo Oly VII, 2021.7
Two congruent rectangles are located as shown in the figure. Find the area of the shaded part.
[img]https://cdn.artofproblemsolving.com/attachments/2/e/10b164535ab5b3a3b98ce1a0b84892cd11d76f.png[/img]
1978 Czech and Slovak Olympiad III A, 5
Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.
2011 Canada National Olympiad, 3
Amy has divided a square into finitely many white and red rectangles, each with sides parallel to the sides of the square. Within each white rectangle, she writes down its width divided by its height. Within each red rectangle, she writes down its height divided by its width. Finally, she calculates $x$, the sum of these numbers. If the total area of white equals the total area of red, determine the minimum of $x$.
1983 Austrian-Polish Competition, 9
To each side of the regular $p$-gon of side length $1$ there is attached a $1 \times k$ rectangle, partitioned into $k$ unit cells, where $k$ and $p$ are given positive integers and p an odd prime. Let $P$ be the resulting nonconvex star-like polygonal figure consisting of $kp + 1$ regions ($kp$ unit cells and the $p$-gon). Each region is to be colored in one of three colors, adjacent regions having different colors. Furthermore, it is required that the colored figure should not have a symmetry axis. In how many ways can this be done?
2014 Math Prize for Girls Olympiad, 4
Let $n$ be a positive integer. A 4-by-$n$ rectangle is divided into $4n$ unit squares in the usual way. Each unit square is colored black or white. Suppose that every white unit square shares an edge with at least one black unit square. Prove that there are at least $n$ black unit squares.
2021 Latvia Baltic Way TST, P6
Let's call $1 \times 2$ rectangle, which can be a rotated, a domino. Prove that there exists polygon, who can be covered by dominoes in exactly $2021$ different ways.
1989 Tournament Of Towns, (222) 6
We are given $101$ rectangles with sides of integer lengths not exceeding $100$ . Prove that among these $101$ rectangles there are $3$ rectangles, say $A , B$ and $C$ such that $A$ will fit inside $B$ and $B$ inside $C$.
( N . Sedrakyan, Yerevan)
2014 Online Math Open Problems, 1
Carl has a rectangle whose side lengths are positive integers. This rectangle has the property that when he increases the width by 1 unit and decreases the length by 1 unit, the area increases by $x$ square units. What is the smallest possible positive value of $x$?
[i]Proposed by Ray Li[/i]
1974 IMO, 4
Consider decompositions of an $8\times 8$ chessboard into $p$ non-overlapping rectangles subject to the following conditions:
(i) Each rectangle has as many white squares as black squares.
(ii) If $a_i$ is the number of white squares in the $i$-th rectangle, then $a_1<a_2<\ldots <a_p$.
Find the maximum value of $p$ for which such a decomposition is possible. For this value of $p$, determine all possible sequences $a_1,a_2,\ldots ,a_p$.
2014 AMC 10, 15
In rectangle $ABCD$, $DC = 2CB$ and points $E$ and $F$ lie on $\overline{AB}$ so that $\overline{ED}$ and $\overline{FD}$ trisect $\angle ADC$ as shown. What is the ratio of the area of $\triangle DEF$ to the area of rectangle $ABCD$?
[asy]
draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle);
draw((0, 0)--(sqrt(3)/3, 1));
draw((0, 0)--(sqrt(3), 1));
label("A", (0, 1), N);
label("B", (2, 1), N);
label("C", (2, 0), S);
label("D", (0, 0), S);
label("E", (sqrt(3)/3, 1), N);
label("F", (sqrt(3), 1), N);
[/asy]
${ \textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$
2006 AMC 10, 20
In rectangle $ ABCD$, we have $ A \equal{} (6, \minus{} 22)$, $ B \equal{} (2006,178)$, and $ D \equal{} (8,y)$, for some integer $ y$. What is the area of rectangle $ ABCD$?
$ \textbf{(A) } 4000 \qquad \textbf{(B) } 4040 \qquad \textbf{(C) } 4400 \qquad \textbf{(D) } 40,000 \qquad \textbf{(E) } 40,400$
1976 USAMO, 1
(a) Suppose that each square of a 4 x 7 chessboard is colored either black or white. Prove that with [i]any[/i] such coloring, the board must contain a rectangle (formed by the horizontal and vertical lines of the board) whose four distinct unit corner squares are all of the same color.
(b) Exhibit a black-white coloring of a 4 x6 board in which the four corner squares of every rectangle, as described above, are not all of the same color.
2004 Purple Comet Problems, 23
A cubic block with dimensions $n$ by $n$ by $n$ is made up of a collection of $1$ by $1$ by $1$ unit cubes. What is the smallest value of $n$ so that if the outer layer of unit cubes are removed from the block, more than half the original unit cubes will still remain?
2012 Israel National Olympiad, 1
In the picture below, the circles are tangent to each other and to the edges of the rectangle. The larger circle's radius equals 1. Determine the area of the rectangle.
[img]https://i.imgur.com/g3GUg4Z.png[/img]
2005 May Olympiad, 4
There are two paper figures: an equilateral triangle and a rectangle. The height of rectangle is equal to the height of the triangle and the base of the rectangle is equal to the base of the triangle. Divide the triangle into three parts and the rectangle into two, using straight cuts, so that with the five pieces can be assembled, without gaps or overlays, a equilateral triangle. To assemble the figure, each part can be rotated and / or turned around.
2021 Kyiv City MO Round 1, 7.2
Andriy and Olesya take turns (Andriy starts) in a $2 \times 1$ rectangle, drawing horizontal segments of length $2$ or vertical segments of length $1$, as shown in the figure below.
[img]https://i.ibb.co/qWqWxgh/Kyiv-MO-2021-Round-1-7-2.png[/img]
After each move, the value $P$ is calculated - the total perimeter of all small rectangles that are formed (i.e., those inside which no other segment passes). The winner is the one after whose move $P$ is divisible by $2021$ for the first time. Who has a winning strategy?
[i]Proposed by Bogdan Rublov[/i]
2008 Brazil Team Selection Test, 4
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$, $ n\in\mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.
[b]IMO Shortlist 2007 Problem C5 as it appears in the official booklet:[/b]
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$ for every integer $ n.$ Assume each strip $ S_n$ is colored either red or blue, and let $ a$ and $ b$ be two distinct positive integers. Prove that there exists a rectangle with side length $ a$ and $ b$ such that its vertices have the same color.
([i]Edited by Orlando Döhring[/i])
[i]Author: Radu Gologan and Dan Schwarz, Romania[/i]
2023 Novosibirsk Oral Olympiad in Geometry, 3
The rectangle is cut into $10$ squares as shown in the figure on the right. Find its sides if the side of the smallest square is $3$.[img]https://cdn.artofproblemsolving.com/attachments/e/5/1fe3a0e41b2d3182338a557d3d44ff5ef9385d.png[/img]
2001 All-Russian Olympiad Regional Round, 8.4
An angle of size $n \times m$, where $m, n \ge 2$, is called a figure, resulting from a rectangle of size $n \times m$ cells by removing the rectangle size $(n - 1) \times (m - 1)$ cells. Two players take turns making moves consisting in painting in a corner an arbitrary non-zero number of cells forming a rectangle or square.
2013 ELMO Shortlist, 9
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.
[i]Proposed by Allen Liu[/i]
2006 All-Russian Olympiad, 3
On a $49\times 69$ rectangle formed by a grid of lattice squares, all $50\cdot 70$ lattice points are colored blue. Two persons play the following game: In each step, a player colors two blue points red, and draws a segment between these two points. (Different segments can intersect in their interior.) Segments are drawn this way until all formerly blue points are colored red. At this moment, the first player directs all segments drawn - i. e., he takes every segment AB, and replaces it either by the vector $\overrightarrow{AB}$, or by the vector $\overrightarrow{BA}$. If the first player succeeds to direct all the segments drawn in such a way that the sum of the resulting vectors is $\overrightarrow{0}$, then he wins; else, the second player wins.
Which player has a winning strategy?
1996 North Macedonia National Olympiad, 2
Let $P$ be the set of all polygons in the plane and let $M : P \to R$ be a mapping that satisfies:
(i) $M(P) \ge 0$ for each polygon $P$,
(ii) $M(P) = x^2$ if $P$ is an equilateral triangle of side $x$,
(iii) If a polygon $P$ is partitioned into polygons $S$ and $T$, then $M(P) = M(S)+ M(T)$,
(iv) If polygons $P$ and $T$ are congruent, then $M(P) = M(T )$.
Determine $M(P)$ if $P$ is a rectangle with edges $x$ and $y$.
1955 Poland - Second Round, 5
Given a triangle $ ABC $. Find the rectangle of smallest area containing the triangle.