Found problems: 1342
2024 Harvard-MIT Mathematics Tournament, 1
Compute the number of ways to divide a $20 \times 24 $ rectangle into $4 \times 5$ rectangles. (Rotations and reflections are considered distinct.)
2011 Tuymaada Olympiad, 2
How many ways are there to remove an $11\times11$ square from a $2011\times2011$ square so that the remaining part can be tiled with dominoes ($1\times 2$ rectangles)?
Geometry Mathley 2011-12, 9.2
Let $ABDE, BCFZ$ and $CAKL$ be three arbitrary rectangles constructed outside a triangle $ABC$. Let $EF$ meet $ZK$ at $M$, and $N$ be the intersection of the lines through $F,Z$ perpendicular to $FL,ZD$. Prove that $A,M,N$ are collinear.
Kostas Vittas
2008 AMC 8, 21
Jerry cuts a wedge from a $6$-cm cylinder of bologna as shown by the dashed curve. Which answer choice is closest to the volume of his wedge in cubic centimeters?
[asy]
defaultpen(linewidth(0.65));
real d=90-63.43494882;
draw(ellipse((origin), 2, 4));
fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white);
draw(ellipse((-4,0), 2, 4));
draw((0,4)--(-4,4));
draw((0,-4)--(-4,-4));
draw(shift(-2,0)*rotate(-d-5)*ellipse(origin, 1.82, 4.56), linetype("10 10"));
draw((-4,4)--(-8,4), dashed);
draw((-4,-4)--(-8,-4), dashed);
draw((-4,4.3)--(-4,5));
draw((0,4.3)--(0,5));
draw((-7,4)--(-7,-4), Arrows(5));
draw((-4,4.7)--(0,4.7), Arrows(5));
label("$8$ cm", (-7,0), W);
label("$6$ cm", (-2,4.7), N);[/asy]
$\textbf{(A)} 48 \qquad
\textbf{(B)} 75 \qquad
\textbf{(C)}151\qquad
\textbf{(D)}192 \qquad
\textbf{(E)}603$
2018 Morocco TST., 2
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
2020-21 KVS IOQM India, 2
If $ABCD$ is a rectangle and $P$ is a point inside it such that $AP=33, BP=16, DP=63$.
Find $CP$.
2019 Iran MO (3rd Round), 3
Cells of a $n*n$ square are filled with positive integers in the way that in the intersection of the $i-$th column and $j-$th row, the number $i+j$ is written. In every step, we can choose two non-intersecting equal rectangles with one dimension equal to $n$ and swap all the numbers inside these two rectangles with one another. ( without reflection or rotation ) Find the minimum number of moves one should do to reach the position where the intersection of the $i-$th column and $j-$row is written $2n+2-i-j$.
2019 China Western Mathematical Olympiad, 3
Let $S=\{(i,j) \vert i,j=1,2,\ldots ,100\}$ be a set consisting of points on the coordinate plane. Each element of $S$ is colored one of four given colors. A subset $T$ of $S$ is called [i]colorful[/i] if $T$ consists of exactly $4$ points with distinct colors, which are the vertices of a rectangle whose sides are parallel to the coordinate axes. Find the maximum possible number of colorful subsets $S$ can have, among all legitimate coloring patters.
2014 Belarusian National Olympiad, 7
a) $n$ $2\times2$ squares are drawn on the Cartesian plane. The sides of these squares are parallel to the coordinate axes. It is known that the center of any square is not an inner point of any other square. Let $\Pi$ be a rectangle such that it contains all these $n$ squares and its sides are parallel to the coordinate axes.
Prove that the perimeter of $\Pi$ is greater than or equal to $4(\sqrt{n}+1)$.
b) Prove the sharp estimate: the perimeter of $\Pi$ is greater than or equal to $2\lceil \sqrt{n}+1) \rceil$
(here $\lceil a\rceil$ stands for the smallest integer which is greater than or equal to $a$).
1972 IMO Longlists, 28
The lengths of the sides of a rectangle are given to be odd integers. Prove that there does not exist a point within that rectangle that has integer distances to each of its four vertices.
2011 AMC 8, 7
Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially [b]bolded[/b]. What percent of the total area is partially bolded?
[asy]
import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26;
pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4);
draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6));
dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
$ \textbf{(A)}12\frac 12\qquad\textbf{(B)}20\qquad\textbf{(C)}25\qquad\textbf{(D)}33 \frac 13\qquad\textbf{(E)}37\frac 12 $
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
2009 ISI B.Stat Entrance Exam, 5
A cardboard box in the shape of a rectangular parallelopiped is to be enclosed in a cylindrical container with a hemispherical lid. If the total height of the container from the base to the top of the lid is $60$ centimetres and its base has radius $30$ centimetres, find the volume of the largest box that can be completely enclosed inside the container with the lid on.
2012 District Olympiad, 3
Let $ABC$ be an acute triangle. Consider the points $M, N \in (BC), Q \in (AB), P \in (AC)$ such that the $MNPQ$ is a rectangle. Prove that if the center of the rectangle $MNPQ$ coincides with the center of gravity of the triangle $ABC$, then $AB = AC = 3AP$
1970 Polish MO Finals, 4
In the plane are given two mutually perpendicular lines and $n$ rectangles with sides parallel to the two lines. Show that if every two rectangles have a common point, then all the rectangles have a common point.
2001 AMC 12/AHSME, 17
A point $ P$ is selected at random from the interior of the pentagon with vertices $ A \equal{} (0,2)$, $B \equal{} (4,0)$, $C \equal{} (2 \pi \plus{} 1, 0)$, $D \equal{} (2 \pi \plus{} 1,4)$, and $ E \equal{} (0,4)$. What is the probability that $ \angle APB$ is obtuse?
[asy]
size(150);
pair A, B, C, D, E;
A = (0,1.5);
B = (3,0);
C = (2 *pi + 1, 0);
D = (2 * pi + 1,4);
E = (0,4);
draw(A--B--C--D--E--cycle);
label("$A$", A, dir(180));
label("$B$", B, dir(270));
label("$C$", C, dir(0));
label("$D$", D, dir(0));
label("$E$", E, dir(180));
[/asy]
$ \displaystyle \textbf{(A)} \ \frac {1}{5} \qquad \textbf{(B)} \ \frac {1}{4} \qquad \textbf{(C)} \ \frac {5}{16} \qquad \textbf{(D)} \ \frac {3}{8} \qquad \textbf{(E)} \ \frac {1}{2}$
2005 IMC, 4
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function. Prove that there exists $w \in [-1,1]$ such that \[ \frac{f'''(w)}{6} = \frac{f(1)}{2}-\frac{f(-1)}{2}-f'(0). \]
1997 AMC 12/AHSME, 9
In the figure, $ ABCD$ is a $ 2\times 2$ square, $ E$ is the midpoint of $ \overline{AD}$, and $ F$ is on $ \overline{BE}$. If $ \overline{CF}$ is perpendicular to $ \overline{BE}$, then the area of quadrilateral $ CDEF$ is
[asy]defaultpen(linewidth(.8pt));
dotfactor=4;
pair A = (0,2);
pair B = origin;
pair C = (2,0);
pair D = (2,2);
pair E = midpoint(A--D);
pair F = foot(C,B,E);
dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);
label("$A$",A,N);label("$B$",B,S);label("$C$",C,S);label("$D$",D,N);label("$E$",E,N);label("$F$",F,NW);
draw(A--B--C--D--cycle);
draw(B--E);
draw(C--F);
draw(rightanglemark(B,F,C,4));[/asy]$ \textbf{(A)}\ 2\qquad \textbf{(B)}\ 3 \minus{} \frac {\sqrt {3}}{2}\qquad \textbf{(C)}\ \frac {11}{5}\qquad \textbf{(D)}\ \sqrt {5}\qquad \textbf{(E)}\ \frac {9}{4}$
2018 Greece Junior Math Olympiad, 2
A $8\times 8$ board is given. Seven out of $64$ unit squares are painted black. Suppose that there exists a positive $k$ such that no matter which squares are black, there exists a rectangle (with sides parallel to the sides of the board) with area $k$ containing no black squares. Find the maximum value of $k$.
2016 Purple Comet Problems, 16
The figure below shows a barn in the shape of two congruent pentagonal prisms that intersect at right angles and have a common center. The ends of the prisms are made of a 12 foot by 7 foot rectangle surmounted by an isosceles triangle with sides 10 feet, 10 feet, and 12 feet. Each prism is 30 feet long. Find the volume of the barn in cubic feet.
[center][img]https://snag.gy/Ox9CUp.jpg[/img][/center]
2008 Kazakhstan National Olympiad, 1
Let $ F_n$ be a set of all possible connected figures, that consist of $ n$ unit cells. For each element $ f_n$ of this set, let $ S(f_n)$ be the area of that minimal rectangle that covers $ f_n$ and each side of the rectangle is parallel to the corresponding side of the cell. Find $ max(S(f_n))$,where $ f_n\in F_n$?
Remark: Two cells are called connected if they have a common edge.
2021 Saudi Arabia Training Tests, 5
Let $ABCD$ be a rectangle with $P$ lies on the segment $AC$. Denote $Q$ as a point on minor arc $PB$ of $(PAB)$ such that $QB = QC$. Denote $R$ as a point on minor arc $PD$ of $(PAD)$ such that $RC = RD$. The lines $CB$, $CD$ meet $(CQR)$ again at $M, N$ respectively. Prove that $BM = DN$.
by Tran Quang Hung
1999 Cono Sur Olympiad, 2
Let $ABC$ be a triangle right in $A$. Construct a point $P$ on the hypotenuse $BC$ such that if $Q$ is the foot of the perpendicular drawn from $P$ to side $AC$, then the area of the square of side $PQ$ is equal to the area of the rectangle of sides $PB$ and $PC$. Show construction steps.
2018 Pan-African Shortlist, A3
Akello divides a square up into finitely many white and red rectangles, each (rectangle) with sides parallel to the sides of the parent square. Within each white rectangle, she writes down the value of its width divided by its height, while within each red rectangle, she writes down the value of its height divided by its width. Finally, she calculates $x$, the sum of these numbers. If the total area of the white rectangles equals the total area of the red rectangles, what is the least possible value of $x$ she can get?
2021 Malaysia IMONST 2, 1
Find all values of $n$ such that there exists a rectangle with integer side lengths, perimeter $n$, and area $2n$.