Found problems: 1001
2015 Turkey Team Selection Test, 8
Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$ such that $|AC|>|BC|>|AB|$ and the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. Let the reflection of $A$ with respect to $F$ and $E$ be $F_1$ and $E_1$ respectively. The circle tangent to $BC$ at $D$ and passing through $F_1$ intersects $AB$ a second time at $F_2$ and the circle tangent to $BC$ at $D$ and passing through $E_1$ intersects $AC$ a second time at $E_2$. The midpoints of the segments $|OE|$ and $|IF|$ are $P$ and $Q$ respectively. Prove that \[|AB| + |AC| = 2|BC| \iff PQ\perp E_2F_2 \].
2006 AIME Problems, 8
There is an unlimited supply of congruent equilateral triangles made of colored paper. Each triangle is a solid color with the same color on both sides of the paper. A large equilateral triangle is constructed from four of these paper triangles. Two large triangles are considered distinguishable if it is not possible to place one on the other, using translations, rotations, and/or reflections, so that their corresponding small triangles are of the same color.
Given that there are six different colors of triangles from which to choose, how many distinguishable large equilateral triangles may be formed?
2011 ELMO Shortlist, 2
Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$.
[i]David Yang.[/i]
2016 Polish MO Finals, 6
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
1996 USAMO, 5
Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.
2018 Mexico National Olympiad, 6
Let $ABC$ be an acute-angled triangle with circumference $\Omega$. Let the angle bisectors of $\angle B$ and $\angle C$ intersect $\Omega$ again at $M$ and $N$. Let $I$ be the intersection point of these angle bisectors. Let $M'$ and $N'$ be the respective reflections of $M$ and $N$ in $AC$ and $AB$. Prove that the center of the circle passing through $I$, $M'$, $N'$ lies on the altitude of triangle $ABC$ from $A$.
[i]Proposed by Victor DomÃnguez and Ariel GarcÃa[/i]
2005 China Western Mathematical Olympiad, 5
Circles $C(O_1)$ and $C(O_2)$ intersect at points $A$, $B$. $CD$ passing through point $O_1$ intersects $C(O_1)$ at point $D$ and tangents $C(O_2)$ at point $C$. $AC$ tangents $C(O_1)$ at $A$. Draw $AE \bot CD$, and $AE$ intersects $C(O_1)$ at $E$. Draw $AF \bot DE$, and $AF$ intersects $DE$ at $F$. Prove that $BD$ bisects $AF$.
2014 PUMaC Algebra B, 3
On the number line, consider the point $x$ that corresponds to the value $10$. Consider $24$ distinct integer points $y_1$, $y_2$, $\ldots$, $y_{24}$ on the number line such that for all $k$ such that $1\leq k\leq 12$, we have that $y_{2k-1}$ is the reflection of $y_{2k}$ across $x$. Find the minimum possible value of \[\textstyle\sum_{n=1}^{24}(|y_n-1|+|y_n+1|).\]
2013 Uzbekistan National Olympiad, 1
Let real numbers $a,b$ such that $a\ge b\ge 0$. Prove that \[ \sqrt{a^2+b^2}+\sqrt[3]{a^3+b^3}+\sqrt[4]{a^4+b^4} \le 3a+b .\]
2014 NIMO Problems, 14
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Evan Chen[/i]
2002 USA Team Selection Test, 5
Consider the family of nonisosceles triangles $ABC$ satisfying the property $AC^2 + BC^2 = 2 AB^2$. Points $M$ and $D$ lie on side $AB$ such that $AM = BM$ and $\angle ACD = \angle BCD$. Point $E$ is in the plane such that $D$ is the incenter of triangle $CEM$. Prove that exactly one of the ratios
\[ \frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE} \]
is constant.
2015 Iran MO (3rd round), 3
Let $ABC$ be a triangle. consider an arbitrary point $P$ on the plain of $\triangle ABC$. Let $R,Q$ be the reflections of $P$ wrt $AB,AC$ respectively. Let $RQ\cap BC=T$. Prove that $\angle APB=\angle APC$ if and if only $\angle APT=90^{\circ}$.
2015 India IMO Training Camp, 1
In a triangle $ABC$, a point $D$ is on the segment $BC$, Let $X$ and $Y$ be the incentres of triangles $ACD$ and $ABD$ respectively. The lines $BY$ and $CX$ intersect the circumcircle of triangle $AXY$ at $P\ne Y$ and $Q\ne X$, respectively. Let $K$ be the point of intersection of lines $PX$ and $QY$. Suppose $K$ is also the reflection of $I$ in $BC$ where $I$ is the incentre of triangle $ABC$. Prove that $\angle BAC=\angle ADC=90^{\circ}$.
2011 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle and let $BB_1,CC_1$ be respectively the bisectors of $\angle{B},\angle{C}$ with $B_1$ on $AC$ and $C_1$ on $AB$, Let $E,F$ be the feet of perpendiculars drawn from $A$ onto $BB_1,CC_1$ respectively. Suppose $D$ is the point at which the incircle of $ABC$ touches $AB$. Prove that $AD=EF$
1983 IMO Longlists, 73
Let $ABC$ be a nonequilateral triangle. Prove that there exist two points $P$ and $Q$ in the plane of the triangle, one in the interior and one in the exterior of the circumcircle of $ABC$, such that the orthogonal projections of any of these two points on the sides of the triangle are vertices of an equilateral triangle.
2017 Saudi Arabia IMO TST, 1
Let $ABC$ be a triangle inscribed in circle $(O),$ with its altitudes $BE, CF$ intersect at orthocenter $H$ ($E \in AC, F \in AB$). Let $M$ be the midpoint of $BC, K$ be the orthogonal projection of $H$ on $AM$. $EF$ intersects $BC$ at $P$. Let $Q$ be the intersection of tangent of $(O)$ which passes through $A$ with $BC, T$ be the reflection of $Q$ through $P$. Prove that $\angle OKT = 90^o$.
2019 Philippine TST, 4
Let $P$ be a point in parallelogram $ABCD$ such that $$PA \cdot PC + PB \cdot PD = AB \cdot BC.$$ Prove that the reflections of $P$ over lines $AB$, $BC$, $CD$, and $DA$ are concyclic.
2004 Germany Team Selection Test, 2
Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.
2007 IMO Shortlist, 2
Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$.
Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$.
[i]Author: Farzan Barekat, Canada[/i]
2013 USAMTS Problems, 3
Let $A_1A_2A_3\dots A_{20}$ be a $20$-sided polygon $P$ in the plane, where all of the side lengths of $P$ are equal, the interior angle at $A_i$ measures $108$ degrees for all odd $i$, and the interior angle $A_i$ measures $216$ degrees for all even $i$. Prove that the lines $A_2A_8$, $A_4A_{10}$, $A_5A_{13}$, $A_6A_{16}$, and $A_7A_{19}$ all intersect at the same point.
[asy]
import graph;
size(10cm);
pair temp= (-1,0);
pair A01 = (0,0);
pair A02 = rotate(306,A01)*temp;
pair A03 = rotate(144,A02)*A01;
pair A04 = rotate(252,A03)*A02;
pair A05 = rotate(144,A04)*A03;
pair A06 = rotate(252,A05)*A04;
pair A07 = rotate(144,A06)*A05;
pair A08 = rotate(252,A07)*A06;
pair A09 = rotate(144,A08)*A07;
pair A10 = rotate(252,A09)*A08;
pair A11 = rotate(144,A10)*A09;
pair A12 = rotate(252,A11)*A10;
pair A13 = rotate(144,A12)*A11;
pair A14 = rotate(252,A13)*A12;
pair A15 = rotate(144,A14)*A13;
pair A16 = rotate(252,A15)*A14;
pair A17 = rotate(144,A16)*A15;
pair A18 = rotate(252,A17)*A16;
pair A19 = rotate(144,A18)*A17;
pair A20 = rotate(252,A19)*A18;
dot(A01);
dot(A02);
dot(A03);
dot(A04);
dot(A05);
dot(A06);
dot(A07);
dot(A08);
dot(A09);
dot(A10);
dot(A11);
dot(A12);
dot(A13);
dot(A14);
dot(A15);
dot(A16);
dot(A17);
dot(A18);
dot(A19);
dot(A20);
draw(A01--A02--A03--A04--A05--A06--A07--A08--A09--A10--A11--A12--A13--A14--A15--A16--A17--A18--A19--A20--cycle);
label("$A_{1}$",A01,E);
label("$A_{2}$",A02,W);
label("$A_{3}$",A03,NE);
label("$A_{4}$",A04,SW);
label("$A_{5}$",A05,N);
label("$A_{6}$",A06,S);
label("$A_{7}$",A07,N);
label("$A_{8}$",A08,SE);
label("$A_{9}$",A09,NW);
label("$A_{10}$",A10,E);
label("$A_{11}$",A11,W);
label("$A_{12}$",A12,E);
label("$A_{13}$",A13,SW);
label("$A_{14}$",A14,NE);
label("$A_{15}$",A15,S);
label("$A_{16}$",A16,N);
label("$A_{17}$",A17,S);
label("$A_{18}$",A18,NW);
label("$A_{19}$",A19,SE);
label("$A_{20}$",A20,W);[/asy]
2008 National Olympiad First Round, 33
Let $E$ be a point inside the rhombus $ABCD$ such that $|AE|=|EB|$, $m(\widehat{EAB})=12^\circ$, and $m(\widehat{DAE})=72^\circ$. What is $m(\widehat{CDE})$ in degrees?
$
\textbf{(A)}\ 64
\qquad\textbf{(B)}\ 66
\qquad\textbf{(C)}\ 68
\qquad\textbf{(D)}\ 70
\qquad\textbf{(E)}\ 72
$
2013 National Olympiad First Round, 29
Let $O$ be the circumcenter of triangle $ABC$ with $|AB|=5$, $|BC|=6$, $|AC|=7$. Let $A_1$, $B_1$, $C_1$ be the reflections of $O$ over the lines $BC$, $AC$, $AB$, respectively. What is the distance between $A$ and the circumcenter of triangle $A_1B_1C_1$?
$
\textbf{(A)}\ 6
\qquad\textbf{(B)}\ \sqrt {29}
\qquad\textbf{(C)}\ \dfrac {19}{2\sqrt 6}
\qquad\textbf{(D)}\ \dfrac {35}{4\sqrt 6}
\qquad\textbf{(E)}\ \sqrt {\dfrac {35}3}
$
2011 ELMO Shortlist, 2
Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$.
[i]David Yang.[/i]
Novosibirsk Oral Geo Oly IX, 2022.1
A ball was launched on a rectangular billiard table at an angle of $45^o$ to one of the sides. Reflected from all sides (the angle of incidence is equal to the angle of reflection), he returned to his original position . It is known that one of the sides of the table has a length of one meter. Find the length of the second side.
[img]https://cdn.artofproblemsolving.com/attachments/3/d/e0310ea910c7e3272396cd034421d1f3e88228.png[/img]
2011 Preliminary Round - Switzerland, 5
Let $ABCD$ an inscribed quadrilateral and $r$ and $s$ the reflections of the straight line through $A$ and $B$ over the inner angle bisectors of angles $\angle{CAD}$ and $\angle{CBD}$, respectively. Let $P$ the point of intersection of $r$ and $s$ and let $O$ the circumcentre of $ABCD$. Prove that $OP \perp CD$.