This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

1953 AMC 12/AHSME, 49

The coordinates of $ A,B$ and $ C$ are $ (5,5),(2,1)$ and $ (0,k)$ respectively. The value of $ k$ that makes $ \overline{AC}\plus{}\overline{BC}$ as small as possible is: $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4\frac{1}{2} \qquad\textbf{(C)}\ 3\frac{6}{7} \qquad\textbf{(D)}\ 4\frac{5}{6} \qquad\textbf{(E)}\ 2\frac{1}{7}$

2021 AMC 12/AHSME Spring, 5

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^{\circ}$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a$? $\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$

2011 Northern Summer Camp Of Mathematics, 3

Given an acute triangle $ABC$ such that $\angle C< \angle B< \angle A$. Let $I$ be the incenter of $ABC$. Let $M$ be the midpoint of the smaller arc $BC$, $N$ be the midpoint of the segment $BC$ and let $E$ be a point such that $NE=NI$. The line $ME$ intersects circumcircle of $ABC$ at $Q$ (different from $A, B$, and $C$). Prove that [b](i)[/b] The point $Q$ is on the smaller arc $AC$ of circumcircle of $ABC$. [b](ii)[/b] $BQ=AQ+CQ$

2006 Kyiv Mathematical Festival, 1

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Triangle $ABC$ and straight line $l$ are given at the plane. Construct using a compass and a ruler the straightline which is parallel to $l$ and bisects the area of triangle $ABC.$

2009 Sharygin Geometry Olympiad, 12

Let $ CL$ be a bisector of triangle $ ABC$. Points $ A_1$ and $ B_1$ are the reflections of $ A$ and $ B$ in $ CL$, points $ A_2$ and $ B_2$ are the reflections of $ A$ and $ B$ in $ L$. Let $ O_1$ and $ O_2$ be the circumcenters of triangles $ AB_1B_2$ and $ BA_1A_2$ respectively. Prove that angles $ O_1CA$ and $ O_2CB$ are equal.

2009 Sharygin Geometry Olympiad, 4

Three parallel lines $d_a, d_b, d_c$ pass through the vertex of triangle $ABC$. The reflections of $d_a, d_b, d_c$ in $BC, CA, AB$ respectively form triangle $XYZ$. Find the locus of incenters of such triangles. (C.Pohoata)

2017 Vietnamese Southern Summer School contest, Problem 3

Let $\omega$ be a circle with center $O$ and a non-diameter chord $BC$ of $\omega$. A point $A$ varies on $\omega$ such that $\angle BAC<90^{\circ}$. Let $S$ be the reflection of $O$ through $BC$. Let $T$ be a point on $OS$ such that the bisector of $\angle BAC$ also bisects $\angle TAS$. 1. Prove that $TB=TC=TO$. 2. $TB, TC$ cut $\omega$ the second times at points $E, F$, respectively. $AE, AF$ cut $BC$ at $M, N$, respectively. Let $SM$ intersects the tangent line at $C$ of $\omega$ at $X$, $SN$ intersects the tangent line at $B$ of $\omega$ at $Y$. Prove that the bisector of $\angle BAC$ also bisects $\angle XAY$.

2014 Taiwan TST Round 2, 1

Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$. A straight line $L$ is parallel to $BC$ and tangent to the incircle. Suppose $L$ intersects $IO$ at $X$, and select $Y$ on $L$ such that $YI$ is perpendicular to $IO$. Prove that $A$, $X$, $O$, $Y$ are cyclic. [i]Proposed by Telv Cohl[/i]

2008 USAMO, 3

Let $n$ be a positive integer. Denote by $S_n$ the set of points $(x, y)$ with integer coordinates such that \[ \left\lvert x\right\rvert + \left\lvert y + \frac{1}{2} \right\rvert < n. \] A path is a sequence of distinct points $(x_1 , y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in $S_n$ such that, for $i = 2, \ldots, \ell$, the distance between $(x_i , y_i)$ and $(x_{i-1} , y_{i-1} )$ is $1$ (in other words, the points $(x_i, y_i)$ and $(x_{i-1} , y_{i-1} )$ are neighbors in the lattice of points with integer coordinates). Prove that the points in $S_n$ cannot be partitioned into fewer than $n$ paths (a partition of $S_n$ into $m$ paths is a set $\mathcal{P}$ of $m$ nonempty paths such that each point in $S_n$ appears in exactly one of the $m$ paths in $\mathcal{P}$).

2013 China Team Selection Test, 1

The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.

2011 NIMO Summer Contest, 8

Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [i]Proposed by Lewis Chen [/i]

2023 Romania Team Selection Test, P2

A [i]diagonal line[/i] of a (not necessarily convex) polygon with at least four sides is any line through two non-adjacent vertices of that polygon. Determine all polygons with at least four sides satisfying the following condition: The reflexion of each vertex in each diagonal line lies inside or on the boundary of the polygon. [i]The Problem Selection Committee[/i]

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2009 Czech-Polish-Slovak Match, 4

Given a circle, let $AB$ be a chord that is not a diameter, and let $C$ be a point on the longer arc $AB$. Let $K$ and $L$ denote the reflections of $A$ and $B$, respectively, about lines $BC$ and $AC$, respectively. Prove that the distance between the midpoint of $AB$ and the midpoint of $KL$ is independent of the choice of $C$.

2012 ELMO Shortlist, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

2008 Spain Mathematical Olympiad, 2

Given a circle, two fixed points $A$ and $B$ and a variable point $P$, all of them on the circle, and a line $r$, $PA$ and $PB$ intersect $r$ at $C$ and $D$, respectively. Find two fixed points on $r$, $M$ and $N$, such that $CM\cdot DN$ is constant for all $P$.

2005 Junior Balkan Team Selection Tests - Romania, 11

Three circles $\mathcal C_1(O_1)$, $\mathcal C_2(O_2)$ and $\mathcal C_3(O_3)$ share a common point and meet again pairwise at the points $A$, $B$ and $C$. Show that if the points $A$, $B$, $C$ are collinear then the points $Q$, $O_1$, $O_2$ and $O_3$ lie on the same circle.

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2024 JBMO TST - Turkey, 7

Let $ABCD$ be circumscribed quadrilateral such that the midpoints of $AB$,$BC$,$CD$ and $DA$ are $K$, $L$, $M$, $N$ respectively. Let the reflections of the point $M$ wrt the lines $AD$ and $BC$ be $P$ and $Q$ respectively. Let the circumcenter of the triangle $KPQ$ be $R$. Prove that $RN=RL$

2002 China Team Selection Test, 2

Circles $ \omega_{1}$ and $ \omega_{2}$ intersect at points $ A$ and $ B.$ Points $ C$ and $ D$ are on circles $ \omega_{1}$ and $ \omega_{2},$ respectively, such that lines $ AC$ and $ AD$ are tangent to circles $ \omega_{2}$ and $ \omega_{1},$ respectively. Let $ I_{1}$ and $ I_{2}$ be the incenters of triangles $ ABC$ and $ ABD,$ respectively. Segments $ I_{1}I_{2}$ and $ AB$ intersect at $ E$. Prove that: $ \frac {1}{AE} \equal{} \frac {1}{AC} \plus{} \frac {1}{AD}$

2023 Saint Petersburg Mathematical Olympiad, 6

Given is a triangle $ABC$. Let $X$ be the reflection of $B$ in $AC$ and $Y$ is the reflection of $C$ in $AB$. The tangent to $(XAY)$ at $A$ meets $XY$ and $BC$ at $E, F$. Show that $AE=AF$.

2018 Centroamerican and Caribbean Math Olympiad, 2

Let $\Delta ABC$ be a triangle inscribed in the circumference $\omega$ of center $O$. Let $T$ be the symmetric of $C$ respect to $O$ and $T'$ be the reflection of $T$ respect to line $AB$. Line $BT'$ intersects $\omega$ again at $R$. The perpendicular to $CT$ through $O$ intersects line $AC$ at $L$. Let $N$ be the intersection of lines $TR$ and $AC$. Prove that $\overline{CN}=2\overline{AL}$.

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

2017 Brazil Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2000 Iran MO (3rd Round), 1

Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.