This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 264

2003 Romania Team Selection Test, 14

Tags: rhombus , geometry
Given is a rhombus $ABCD$ of side 1. On the sides $BC$ and $CD$ we are given the points $M$ and $N$ respectively, such that $MC+CN+MN=2$ and $2\angle MAN = \angle BAD$. Find the measures of the angles of the rhombus. [i]Cristinel Mortici[/i]

1978 Romania Team Selection Test, 4

Diagonals $ AC $ and $ BD $ of a convex quadrilateral $ ABCD $ intersect a point $ O. $ Prove that if triangles $ OAB,OBC,OCD $ and $ ODA $ have the same perimeter, then $ ABCD $ is a rhombus. What happens if $ O $ is some other point inside the quadrilateral?

2002 Federal Math Competition of S&M, Problem 3

Let $ ABCD$ be a rhombus with $ \angle BAD \equal{} 60^{\circ}$. Points $ S$ and $ R$ are chosen inside the triangles $ ABD$ and $ DBC$, respectively, such that $ \angle SBR \equal{} \angle RDS \equal{} 60^{\circ}$. Prove that $ SR^2\geq AS\cdot CR$.

1969 IMO Longlists, 71

Tags: geometry , angle , rhombus
$(YUG 3)$ Let four points $A_i (i = 1, 2, 3, 4)$ in the plane determine four triangles. In each of these triangles we choose the smallest angle. The sum of these angles is denoted by $S.$ What is the exact placement of the points $A_i$ if $S = 180^{\circ}$?

1993 All-Russian Olympiad Regional Round, 9.7

On the diagonal $AC$ of the rhombus $ABCD$, a point $E$ is taken, which is different from points $A$ and $C$, and on the lines $AB$ and $BC$ are points $N$ and $M$, respectively, with $AE = NE$ and $CE = ME$. Let $K$ be the intersection point of lines $AM$ and $CN$. Prove that points $K, E$ and $D$ are collinear.

1979 IMO Longlists, 1

Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).

1999 All-Russian Olympiad, 3

A circle touches sides $DA$, $AB$, $BC$, $CD$ of a quadrilateral $ABCD$ at points $K$, $L$, $M$, $N$, respectively. Let $S_1$, $S_2$, $S_3$, $S_4$ respectively be the incircles of triangles $AKL$, $BLM$, $CMN$, $DNK$. The external common tangents distinct from the sides of $ABCD$ are drawn to $S_1$ and $S_2$, $S_2$ and $S_3$, $S_3$ and $S_4$, $S_4$ and $S_1$. Prove that these four tangents determine a rhombus.

2008 AMC 10, 24

Quadrilateral $ABCD$ has $AB=BC=CD$, $\angle ABC=70^\circ$, and $\angle BCD=170^\circ$. What is the degree measure of $\angle BAD$? $ \textbf{(A)}\ 75\qquad \textbf{(B)}\ 80\qquad \textbf{(C)}\ 85\qquad \textbf{(D)}\ 90\qquad \textbf{(E)}\ 95$

2011 Korea National Olympiad, 1

Two circles $ O, O'$ having same radius meet at two points, $ A,B (A \not = B) $. Point $ P,Q $ are each on circle $ O $ and $ O' $ $(P \not = A,B ~ Q\not = A,B )$. Select the point $ R $ such that $ PAQR $ is a parallelogram. Assume that $ B, R, P, Q $ is cyclic. Now prove that $ PQ = OO' $.

2002 National Olympiad First Round, 25

Let $E$ be a point on side $[AD]$ of rhombus $ABCD$. Lines $AB$ and $CE$ meet at $F$, lines $BE$ and $DF$ meet at $G$. If $m(\widehat{DAB}) = 60^\circ $, what is$m(\widehat{DGB})$? $ \textbf{a)}\ 45^\circ \qquad\textbf{b)}\ 50^\circ \qquad\textbf{c)}\ 60^\circ \qquad\textbf{d)}\ 65^\circ \qquad\textbf{e)}\ 75^\circ $

2013 Iran MO (3rd Round), 4

We have constructed a rhombus by attaching two equal equilateral triangles. By putting $n-1$ points on all 3 sides of each triangle we have divided the sides to $n$ equal segments. By drawing line segements between correspounding points on each side of the triangles we have divided the rhombus into $2n^2$ equal triangles. We write the numbers $1,2,\dots,2n^2$ on these triangles in a way no number appears twice. On the common segment of each two triangles we write the positive difference of the numbers written on those triangles. Find the maximum sum of all numbers written on the segments. (25 points) [i]Proposed by Amirali Moinfar[/i]

2004 Unirea, 4

Tags: geometry , rhombus
Let $ M,N,P,Q $ be the middlepoints of the segments $ AB,BC,CD,DA, $ respectively, of a convex quadrilateral $ ABCD. $ Prove that if $ ANP $ and $ CMQ $ are equilateral, then $ ABDC $ is a rhombus . Moreover, determine the angles of this rhombus.

2021 Malaysia IMONST 1, 4

The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus?

1987 Tournament Of Towns, (151) 2

Tags: geometry , rhombus , angle , locus
Find the locus of points $M$ inside the rhombus $ABCD$ such that the sum of angles $AMB$ and $CMD$ equals $180^o$ .

1987 National High School Mathematics League, 2

Tags: rhombus , geometry
For a rhombus with side length of 5, length of one of its diagonal is not larger than $6$, length of the other diagonal is not smaller than $6$, then the maximum value of the sum of the two diagonals is $\text{(A)}10\sqrt{2}\qquad\text{(B)}14\qquad\text{(C)}5\sqrt{6}\qquad\text{(D)}12$

2010 Dutch BxMO TST, 1

Let $ABCD$ be a trapezoid with $AB // CD$, $2|AB| = |CD|$ and $BD \perp BC$. Let $M$ be the midpoint of $CD$ and let $E$ be the intersection $BC$ and $AD$. Let $O$ be the intersection of $AM$ and $BD$. Let $N$ be the intersection of $OE$ and $AB$. (a) Prove that $ABMD$ is a rhombus. (b) Prove that the line $DN$ passes through the midpoint of the line segment $BE$.

2008 District Olympiad, 1

A regular tetrahedron is sectioned with a plane after a rhombus. Prove that the rhombus is square.

2005 AMC 12/AHSME, 7

Tags: geometry , rhombus
What is the area enclosed by the graph of $ |3x| \plus{} |4y| \equal{} 12$? $ \textbf{(A)}\ 6\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 24\qquad \textbf{(E)}\ 25$

Kyiv City MO 1984-93 - geometry, 1986.9.2

The faces of a convex polyhedron are congruent parallelograms. Prove that they are all rhombuses.

2015 Oral Moscow Geometry Olympiad, 5

On the $BE$ side of a regular $ABE$ triangle, a $BCDE$ rhombus is built outside it. The segments $AC$ and $BD$ intersect at point $F$. Prove that $AF <BD$.

1999 Estonia National Olympiad, 4

We build rhombuses from natural numbers. Find the sum of the numbers in the $n$-th rhombus. [img]https://cdn.artofproblemsolving.com/attachments/e/7/22360573f76c615ca43bbacb8f15e587772ca4.png[/img]

2012 District Olympiad, 4

Let $f:[0,1]\rightarrow \mathbb{R}$ a differentiable function such that $f(0)=f(1)=0$ and $|f'(x)|\le 1,\ \forall x\in [0,1]$. Prove that: \[\left|\int_0 ^1f(t)dt\right|<\frac{1}{4}\]

1971 IMO Longlists, 29

Tags: rhombus , geometry
A rhombus with its incircle is given. At each vertex of the rhombus a circle is constructed that touches the incircle and two edges of the rhombus. These circles have radii $r_1,r_2$, while the incircle has radius $r$. Given that $r_1$ and $r_2$ are natural numbers and that $r_1r_2=r$, find $r_1,r_2,$ and $r$.

2018 Saint Petersburg Mathematical Olympiad, 5

Tags: geometry , rhombus
Regular hexagon is divided to equal rhombuses, with sides, parallels to hexagon sides. On the three sides of the hexagon, among which there are no neighbors, is set directions in order of traversing the hexagon against hour hand. Then, on each side of the rhombus, an arrow directed just as the side of the hexagon parallel to this side. Prove that there is not a closed path going along the arrows.

2005 Taiwan TST Round 3, 2

It is known that $\triangle ABC$ is an acute triangle. Let $C'$ be the foott of the perpendicular from $C$ to $AB$, and $D$, $E$ two distinct points on $CC'$. The feet of the perpendiculars from $D$ to $AC$ and $BC$ are $F$ and $G$, respectively. Show that if $DGEF$ is a parallelogram then $ABC$ is isosceles.