This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 264

2007 Federal Competition For Advanced Students, Part 2, 3

Tags: rhombus , geometry
Determine all rhombuses $ ABCD$ with the given length $ 2a$ of ist sides by giving the angle $ \alpha \equal{} \angle BAD$, such that there exists a circle which cuts each side of the rhombus in a chord of length $ a$.

Ukrainian From Tasks to Tasks - geometry, 2013.9

The perpendicular bisectors of the sides $AB$ and $CD$ of the rhombus $ABCD$ are drawn. It turned out that they divided the diagonal $AC$ into three equal parts. Find the altitude of the rhombus if $AB = 1$.

2017 OMMock - Mexico National Olympiad Mock Exam, 1

Let $ABC$ be a triangle with circumcenter $O$. Point $D, E, F$ are chosen on sides $AB, BC$ and $AC$, respectively, such that $ADEF$ is a rhombus. The circumcircles of $BDE$ and $CFE$ intersect $AE$ at $P$ and $Q$ respectively. Show that $OP=OQ$. [i]Proposed by Ariel García[/i]

2004 Brazil Team Selection Test, Problem 3

Tags: rhombus , geometry
Determine the locus of points $M$ in the plane of a given rhombus $ABCD$ such that $MA\cdot MC+MB\cdot MD=AB^2$.

2003 Brazil National Olympiad, 3

$ABCD$ is a rhombus. Take points $E$, $F$, $G$, $H$ on sides $AB$, $BC$, $CD$, $DA$ respectively so that $EF$ and $GH$ are tangent to the incircle of $ABCD$. Show that $EH$ and $FG$ are parallel.

2011 AMC 10, 24

Two distinct regular tetrahedra have all their vertices among the vertices of the same unit cube. What is the volume of the region formed by the intersection of the tetrahedra? $ \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{\sqrt{2}}{12}\qquad\textbf{(C)}\ \frac{\sqrt{3}}{12}\qquad\textbf{(D)}\ \frac{1}{6}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{6} $

Estonia Open Senior - geometry, 1998.1.2

Prove that the parallelogram $ABCD$ with relation $\angle ABD + \angle DAC = 90^o$, is either a rectangle or a rhombus.

2020 Stanford Mathematics Tournament, 1

Tags: geometry , rhombus
A circle with radius $1$ is circumscribed by a rhombus. What is the minimum possible area of this rhombus?

2011 AMC 12/AHSME, 16

Rhombus $ABCD$ has side length $2$ and $\angle B = 120 ^\circ$. Region $R$ consists of all points inside the rhombus that are closer to vertex $B$ than any of the other three vertices. What is the area of $R$? $ \textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad \textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad \textbf{(D)}\ 1+\frac{\sqrt{3}}{3} \qquad \textbf{(E)}\ 2 $

1906 Eotvos Mathematical Competition, 2

Tags: geometry , rhombus , square
Let $K, L,M,N$ designate the centers of the squares erected on the four sides (outside) of a rhombus. Prove that the polygon $KLMN$ is a square.

2011 AMC 10, 20

Rhombus $ABCD$ has side length $2$ and $\angle B = 120 ^\circ$. Region $R$ consists of all points inside the rhombus that are closer to vertex $B$ than any of the other three vertices. What is the area of $R$? $ \textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad \textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad \textbf{(D)}\ 1+\frac{\sqrt{3}}{3} \qquad \textbf{(E)}\ 2 $

1954 AMC 12/AHSME, 45

In a rhombus, $ ABCD$, line segments are drawn within the rhombus, parallel to diagonal $ BD$, and terminated in the sides of the rhombus. A graph is drawn showing the length of a segment as a function of its distance from vertex $ A$. The graph is: $ \textbf{(A)}\ \text{A straight line passing through the origin.} \\ \textbf{(B)}\ \text{A straight line cutting across the upper right quadrant.} \\ \textbf{(C)}\ \text{Two line segments forming an upright V.} \\ \textbf{(D)}\ \text{Two line segments forming an inverted V.} \\ \textbf{(E)}\ \text{None of these.}$

Estonia Open Senior - geometry, 2002.2.3

Let $ABCD$ be a rhombus with $\angle DAB = 60^o$. Let $K, L$ be points on its sides $AD$ and $DC$ and $M$ a point on the diagonal $AC$ such that $KDLM$ is a parallelogram. Prove that triangle $BKL$ is equilateral.

2007 Stanford Mathematics Tournament, 10

Tags: rhombus , geometry
A nondegenerate rhombus has side length $l$, and its area is twice that of its inscribed circle. Find the radius of the inscribed circle.

2020 Canada National Olympiad, 2

Tags: geometry , rhombus
$ABCD$ is a fixed rhombus. Segment $PQ$ is tangent to the inscribed circle of $ABCD$, where $P$ is on side $AB$, $Q$ is on side $AD$. Show that, when segment $PQ$ is moving, the area of $\Delta CPQ$ is a constant.

1961 AMC 12/AHSME, 14

A rhombus is given with one diagonal twice the length of the other diagonal. Express the side of the rhombus is terms of $K$, where $K$ is the area of the rhombus in square inches. ${{ \textbf{(A)}\ \sqrt{K} \qquad\textbf{(B)}\ \frac{1}{2}\sqrt{2K} \qquad\textbf{(C)}\ \frac{1}{3}\sqrt{3K} \qquad\textbf{(D)}\ \frac{1}{4}\sqrt{4K} }\qquad\textbf{(E)}\ \text{None of these are correct} } $

2016 NIMO Problems, 4

Tags: geometry , rhombus
In rhombus $ABCD$, let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $AD$. If $CN = 7$ and $DM = 24$, compute $AB^2$. [i]Proposed by Andy Liu[/i]

2016 Junior Balkan Team Selection Tests - Romania, 4

Let $ABCD$ be a cyclic quadrilateral.$E$ is the midpoint of $(AC)$ and $F$ is the midpoint of $(BD)$ {$G$}=$AB\cap CD$ and {$H$}=$AD\cap BC$. a)Prove that the intersections of the angle bisector of $\angle{AHB}$ and the sides $AB$ and $CD$ and the intersections of the angle bisector of$\angle{AGD}$ with $BC$ and $AD$ are the verticles of a rhombus b)Prove that the center of this rhombus lies on $EF$

2014 Germany Team Selection Test, 3

In a triangle $ABC$, let $D$ and $E$ be the feet of the angle bisectors of angles $A$ and $B$, respectively. A rhombus is inscribed into the quadrilateral $AEDB$ (all vertices of the rhombus lie on different sides of $AEDB$). Let $\varphi$ be the non-obtuse angle of the rhombus. Prove that $\varphi \le \max \{ \angle BAC, \angle ABC \}$.

2015 Auckland Mathematical Olympiad, 2

A convex quadrillateral $ABCD$ is given and the intersection point of the diagonals is denoted by $O$. Given that the perimeters of the triangles $ABO, BCO, CDO,ADO$ are equal, prove that $ABCD$ is a rhombus.

2014 Brazil National Olympiad, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

1994 National High School Mathematics League, 6

In rectangular coordinate system, the equation $\frac{|x+y|}{2a}+\frac{|x-y|}{2b}=1$ ($a,b$ are different positive numbers) refers to $\text{(A)}$ a triangle $\text{(B)}$ a square $\text{(C)}$ rectangle, not square $\text{(D)}$ rhombus, not square

2023 Austrian MO Regional Competition, 2

Let $ABCD$ be a rhombus with $\angle BAD < 90^o$. The circle passing through $D$ with center $A$ intersects the line $CD$ a second time in point $E$. Let $S$ be the intersection of the lines $BE$ and $AC$. Prove that the points $A$, $S$, $D$ and $E$ lie on a circle. [i](Karl Czakler)[/i]

2014 Korea Junior Math Olympiad, 7

In a parallelogram $\Box ABCD$ $(AB < BC)$ The incircle of $\triangle ABC$ meets $\overline {BC}$ and $\overline {CA}$ at $P, Q$. The incircle of $\triangle ACD$ and $\overline {CD}$ meets at $R$. Let $S$ = $PQ$ $\cap$ $AD$ $U$ = $AR$ $\cap$ $CS$ $T$, a point on $\overline {BC}$ such that $\overline {AB} = \overline {BT}$ Prove that $AT, BU, PQ$ are concurrent

2018 Yasinsky Geometry Olympiad, 5

The point $M$ lies inside the rhombus $ABCD$. It is known that $\angle DAB=110^o$, $\angle AMD=80^o$, $\angle BMC= 100^o$. What can the angle $\angle AMB$ be equal?