This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 567

1972 AMC 12/AHSME, 35

[asy] draw(unitsquare);draw((0,0)--(.25,sqrt(3)/4)--(.5,0)); label("Z",(0,1),NW);label("Y",(1,1),NE);label("A",(0,0),SW);label("X",(1,0),SE);label("B",(.5,0),S);label("P",(.25,sqrt(3)/4),N); //Credit to Zimbalono for the diagram[/asy] Equilateral triangle $ABP$ (see figure) with side $AB$ of length $2$ inches is placed inside square $AXYZ$ with side of length $4$ inches so that $B$ is on side $AX$. The triangle is rotated clockwise about $B$, then $P$, and so on along the sides of the square until $P$ returns to its original position. The length of the path in inches traversed by vertex $P$ is equal to $\textbf{(A) }20\pi/3\qquad\textbf{(B) }32\pi/3\qquad\textbf{(C) }12\pi\qquad\textbf{(D) }40\pi/3\qquad \textbf{(E) }15\pi$

1993 All-Russian Olympiad, 2

Is it true that any two rectangles of equal area can be placed in the plane such that any horizontal line intersecting at least one of them will also intersect the other, and the segments of intersection will be equal?

2001 AMC 12/AHSME, 20

Points $ A \equal{} (3,9), B \equal{} (1,1), C \equal{} (5,3),$ and $ D \equal{} (a,b)$ lie in the first quadrant and are the vertices of quadrilateral $ ABCD$. The quadrilateral formed by joining the midpoints of $ \overline{AB}, \overline{BC}, \overline{CD},$ and $ \overline{DA}$ is a square. What is the sum of the coordinates of point $ D$? $ \textbf{(A)} \ 7 \qquad \textbf{(B)} \ 9 \qquad \textbf{(C)} \ 10 \qquad \textbf{(D)} \ 12 \qquad \textbf{(E)} \ 16$

1985 Tournament Of Towns, (094) 2

The radius $OM$ of a circle rotates uniformly at a rate of $360/n$ degrees per second , where $n$ is a positive integer . The initial radius is $OM_0$. After $1$ second the radius is $OM_1$ , after two more seconds (i.e. after three seconds altogether) the radius is $OM_2$ , after $3$ more seconds (after $6$ seconds altogether) the radius is $OM_3$, ..., after $n - 1$ more seconds its position is $OM_{n-1}$. For which values of $n$ do the points $M_0, M_1 , ..., M_{n-1}$ divide the circle into $n$ equal arcs? (a) Is it true that the powers of $2$ are such values? (b) Does there exist such a value which is not a power of $2$? (V. V. Proizvolov , Moscow)

2006 Purple Comet Problems, 12

Tags: rotation
We draw a triangle inside of a circle with one vertex at the center of the circle and the other two vertices on the circumference of the circle. The angle at the center of the circle measures $75$ degrees. We draw a second triangle, congruent to the first, also with one vertex at the center of the circle and the other vertices on the circumference of the circle rotated $75$ degrees clockwise from the first triangle so that it shares a side with the first triangle. We draw a third, fourth, and fifth such triangle each rotated $75$ degrees clockwise from the previous triangle. The base of the fifth triangle will intersect the base of the first triangle. What is the degree measure of the obtuse angle formed by the intersection?

2013 Iran Team Selection Test, 18

A special kind of parallelogram tile is made up by attaching the legs of two right isosceles triangles of side length $1$. We want to put a number of these tiles on the floor of an $n\times n$ room such that the distance from each vertex of each tile to the sides of the room is an integer and also no two tiles overlap. Prove that at least an area $n$ of the room will not be covered by the tiles. [i]Proposed by Ali Khezeli[/i]

2003 APMO, 2

Suppose $ABCD$ is a square piece of cardboard with side length $a$. On a plane are two parallel lines $\ell_1$ and $\ell_2$, which are also $a$ units apart. The square $ABCD$ is placed on the plane so that sides $AB$ and $AD$ intersect $\ell_1$ at $E$ and $F$ respectively. Also, sides $CB$ and $CD$ intersect $\ell_2$ at $G$ and $H$ respectively. Let the perimeters of $\triangle AEF$ and $\triangle CGH$ be $m_1$ and $m_2$ respectively. Prove that no matter how the square was placed, $m_1+m_2$ remains constant.

2010 AMC 12/AHSME, 25

Two quadrilaterals are considered the same if one can be obtained from the other by a rotation and a translation. How many different convex cyclic quadrilaterals are there with integer sides and perimeter equal to $ 32$? $ \textbf{(A)}\ 560 \qquad \textbf{(B)}\ 564 \qquad \textbf{(C)}\ 568 \qquad \textbf{(D)}\ 1498 \qquad \textbf{(E)}\ 2255$

2013 USA TSTST, 9

Let $r$ be a rational number in the interval $[-1,1]$ and let $\theta = \cos^{-1} r$. Call a subset $S$ of the plane [i]good[/i] if $S$ is unchanged upon rotation by $\theta$ around any point of $S$ (in both clockwise and counterclockwise directions). Determine all values of $r$ satisfying the following property: The midpoint of any two points in a good set also lies in the set.

2014 USAJMO, 5

Let $k$ be a positive integer. Two players $A$ and $B$ play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with $A$ moving first. In his move, $A$ may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, $B$ may choose any counter on the board and remove it. If at any time there are $k$ consecutive grid cells in a line all of which contain a counter, $A$ wins. Find the minimum value of $k$ for which $A$ cannot win in a finite number of moves, or prove that no such minimum value exists.

2012 AMC 12/AHSME, 8

Tags: symmetry , rotation
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible? $ \textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304 $

2009 Princeton University Math Competition, 1

Tags: rotation
You have an unlimited supply of monominos, dominos, and L-trominos. How many ways, in terms of $n$, can you cover a $2 \times n$ grid with these shapes? Please note that you do [i]NOT[/i] have to use all the shapes. Also, you are allowed to [i]rotate[/i] any of the pieces, so they do not have to be aligned exactly as they are in the diagram below. [asy] pen db = rgb(0,0,0.5); real r = 0.08; pair s1 = (3,0), s2 = 2*s1; fill(unitsquare, db); fill(shift(s1)*unitsquare, db); fill(shift(s1-(0,1+r))*unitsquare, db); fill(shift(s2)*unitsquare, db); fill(shift(s2-(0,1+r))*unitsquare, db); fill(shift(s2+(1+r,-1-r))*unitsquare, db); [/asy]

2023 Canadian Mathematical Olympiad Qualification, 8

A point starts at the origin of the coordinate plane. Every minute, it either moves one unit in the $x$-direction or is rotated $\theta$ degrees counterclockwise about the origin. (a) If $\theta = 90^o$, determine all locations where the point could end up. (b) If $\theta = 45^o$, prove that for every location $ L$ in the coordinate plane and every positive number $\varepsilon$, there is a sequence of moves after which the point has distance less than $\varepsilon$ from $L$. (c) Determine all rational numbers $\theta$ such that for every location $L$ in the coordinate plane and every positive number $\varepsilon$, there is a sequence of moves after which the point has distance less than $\varepsilon$ from $L$. (d) Prove that when $\theta$ is irrational, for every location $L$ in the coordinate plane and every positive number $\varepsilon$, there is a sequence of moves after which the point has distance less than $\varepsilon$ from $L.$

2012 USAMO, 2

A circle is divided into $432$ congruent arcs by $432$ points. The points are colored in four colors such that some $108$ points are colored Red, some $108$ points are colored Green, some $108$ points are colored Blue, and the remaining $108$ points are colored Yellow. Prove that one can choose three points of each color in such a way that the four triangles formed by the chosen points of the same color are congruent.

2007 Balkan MO, 4

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

1993 AIME Problems, 7

Three numbers, $a_1$, $a_2$, $a_3$, are drawn randomly and without replacement from the set $\{1, 2, 3, \dots, 1000\}$. Three other numbers, $b_1$, $b_2$, $b_3$, are then drawn randomly and without replacement from the remaining set of 997 numbers. Let $p$ be the probability that, after a suitable rotation, a brick of dimensions $a_1 \times a_2 \times a_3$ can be enclosed in a box of dimensions $b_1 \times b_2 \times b_3$, with the sides of the brick parallel to the sides of the box. If $p$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?

2010 Today's Calculation Of Integral, 662

In $xyz$ space, let $A$ be the solid generated by a rotation of the figure, enclosed by the curve $y=2-2x^2$ and the $x$-axis about the $y$-axis. (1) When the solid is cut by the plane $x=a\ (|a|\leq 1)$, find the inequality which expresses the figure of the cross-section. (2) Denote by $L$ the distance between the point $(a,\ 0,\ 0)$ and the point on the perimeter of the cross-section found in (1), find the maximum value of $L$. (3) Find the volume of the solid by a rotation of the solid $A$ about the $x$-axis. [i]1987 Sophia University entrance exam/Science and Technology[/i]

2008 AIME Problems, 14

Let $ \overline{AB}$ be a diameter of circle $ \omega$. Extend $ \overline{AB}$ through $ A$ to $ C$. Point $ T$ lies on $ \omega$ so that line $ CT$ is tangent to $ \omega$. Point $ P$ is the foot of the perpendicular from $ A$ to line $ CT$. Suppose $ AB \equal{} 18$, and let $ m$ denote the maximum possible length of segment $ BP$. Find $ m^{2}$.

2008 AMC 10, 19

Rectangle $ PQRS$ lies in a plane with $ PQ = RS = 2$ and $ QR = SP = 6$. The rectangle is rotated $ 90^\circ$ clockwise about $ R$, then rotated $ 90^\circ$ clockwise about the point that $ S$ moved to after the first rotation. What is the length of the path traveled by point $ P$? ${ \textbf{(A)}\ (2\sqrt3 + \sqrt5})\pi \qquad \textbf{(B)}\ 6\pi \qquad \textbf{(C)}\ (3 + \sqrt {10})\pi \qquad \textbf{(D)}\ (\sqrt3 + 2\sqrt5)\pi \\ \textbf{(E)}\ 2\sqrt {10}\pi$

2011 Lusophon Mathematical Olympiad, 2

Consider two circles, tangent at $T$, both inscribed in a rectangle of height $2$ and width $4$. A point $E$ moves counterclockwise around the circle on the left, and a point $D$ moves clockwise around the circle on the right. $E$ and $D$ start moving at the same time; $E$ starts at $T$, and $D$ starts at $A$, where $A$ is the point where the circle on the right intersects the top side of the rectangle. Both points move with the same speed. Find the locus of the midpoints of the segments joining $E$ and $D$.

2012 Sharygin Geometry Olympiad, 21

Two perpendicular lines pass through the orthocenter of an acute-angled triangle. The sidelines of the triangle cut on each of these lines two segments: one lying inside the triangle and another one lying outside it. Prove that the product of two internal segments is equal to the product of two external segments. [i]Nikolai Beluhov and Emil Kolev[/i]

2012 Today's Calculation Of Integral, 816

Find the volume of the solid of a circle $x^2+(y-1)^2=4$ generated by a rotation about the $x$-axis.

2020 AMC 10, 23

Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations: [list=] [*]$L,$ a rotation of $90^{\circ}$ counterclockwise around the origin; [*]$R,$ a rotation of $90^{\circ}$ clockwise around the origin; [*]$H,$ a reflection across the $x$-axis; and [*]$V,$ a reflection across the $y$-axis. [/list] Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.) $\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\ 2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$

1996 IMO Shortlist, 6

Let the sides of two rectangles be $ \{a,b\}$ and $ \{c,d\},$ respectively, with $ a < c \leq d < b$ and $ ab < cd.$ Prove that the first rectangle can be placed within the second one if and only if \[ \left(b^2 \minus{} a^2\right)^2 \leq \left(bc \minus{} ad \right)^2 \plus{} \left(bd \minus{} ac \right)^2.\]

1985 IMO Longlists, 62

A “large” circular disk is attached to a vertical wall. It rotates clockwise with one revolution per minute. An insect lands on the disk and immediately starts to climb vertically upward with constant speed $\frac{\pi}{3}$ cm per second (relative to the disk). Describe the path of the insect [i](a)[/i] relative to the disk; [i](b)[/i] relative to the wall.