Found problems: 567
2024 Bulgarian Autumn Math Competition, 12.4
Let $L$ be a figure made of $3$ squares, a right isosceles triangle and a quarter circle (all unit sized) as shown below: [img]https://wiki-images.artofproblemsolving.com//f/f9/Weirwiueripo.png[/img]
Prove that any $18$ points in the plane can be covered with copies of $L$, which don't overlap (copies of $L$ may be rotated or flipped)
2019 AMC 12/AHSME, 3
Which one of the following rigid transformations (isometries) maps the line segment $\overline{AB}$ onto the line segment $\overline{A'B'}$ so that the image of $A(-2,1)$ is $A'(2,-1)$ and the image of $B(-1,4)$ is $B'(1,-4)?$
$\textbf{(A) } $ reflection in the $y$-axis
$\textbf{(B) } $ counterclockwise rotation around the origin by $90^{\circ}$
$\textbf{(C) } $ translation by 3 units to the right and 5 units down
$\textbf{(D) } $ reflection in the $x$-axis
$\textbf{(E) } $ clockwise rotation about the origin by $180^{\circ}$
1989 Romania Team Selection Test, 5
A laticial cycle of length $n$ is a sequence of lattice points $(x_k, y_k)$, $k = 0, 1,\cdots, n$, such that $(x_0, y_0) = (x_n, y_n) = (0, 0)$ and $|x_{k+1} -x_{k}|+|y_{k+1} - y_{k}| = 1$ for each $k$. Prove that for all $n$, the number of latticial cycles of length $n$ is a perfect square.
1991 Tournament Of Towns, (288) 4
A circle is divided by the chord $AB$ into two segments and one of them is rotated about the point $A$ by a certain angle, the point $B$ being taken to $B'$. Prove that the line segments joining the midpoints of the two arcs (i.e. the arc $AB$ which had not been rotated and the rotated arc $AB'$) with the midpoint of $BB'$ are perpendicular.
(F. Nazyrov, 11th form student, Obninsk)
2012 AMC 12/AHSME, 19
Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen?
$ \textbf{(A)}\ 60
\qquad\textbf{(B)}\ 170
\qquad\textbf{(C)}\ 290
\qquad\textbf{(D)}\ 320
\qquad\textbf{(E)}\ 660
$
2018 PUMaC Live Round, Estimation 1
A $2$-by-$2018$ grid is completely covered by non-overlapping L-tiles (see diagram below) and $1$-by-$1$ squares. If the L-tiles can be rotated and flipped, there are a total of $M$ such tilings.
[asy]
size(1cm);
draw((0,0)--(2,0)--(2,1)--(1,1)--(1,2)--(0,2)--cycle);
draw((0,1)--(1,1)--(1,0));
[/asy]
What is $\ln M?$
Give your answer as an integer or decimal. If your answer is $A$ and the correct answer is $C$, then your score will be $\max\{\lfloor7.5-\tfrac{|A-C|^{1.5}}{20}\rfloor,0\}.$
2009 Canada National Olympiad, 2
Two circles of different radii are cut out of cardboard. Each circle is subdivided into $200$ equal sectors. On each circle $100$ sectors are painted white and the other $100$ are painted black. The smaller circle is then placed on top of the larger circle, so that their centers coincide. Show that one can rotate the small circle so that the sectors on the two circles line up and at least $100$ sectors on the small circle lie over sectors of the same color on the big circle.
2009 Today's Calculation Of Integral, 427
Let $ a$ be a positive real number, in Euclidean space, consider the two disks:
$ D_1\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}a\}$,
$ D_2\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}\minus{}a\}$.
Let $ D_1$ overlap to $ D_2$ by rotating $ D_1$ about the $ y$ axis by $ 180^\circ$. Note that the rotational direction is supposed to be the direction such that we would lean the postive part of the $ z$ axis to into the direction of the postive part of $ x$ axis. Let denote $ E$ the part in which $ D_1$ passes while the rotation, let denote $ V(a)$ the volume of $ E$ and let $ W(a)$ be the volume of common part of $ E$ and $ \{(x,\ y,\ z)|x\geq 0\}$.
(1) Find $ W(a)$.
(2) Find $ \lim_{a\rightarrow \infty} V(a)$.
2002 USAMTS Problems, 5
As illustrated below, we can dissect every triangle $ABC$ into four pieces so that piece 1 is a triangle similar to the original triangle, while the other three pieces can be assembled into a triangle also similar to the original triangle. Determine the ratios of the sizes of the three triangles and verify that the construction works.
[asy]
import olympiad;size(350);defaultpen(linewidth(0.7)+fontsize(10));
path p=origin--(13,0)--(9,8)--cycle;
path p2=rotate(180)*p,
p3=shift(-26,0)*scale(2)*p,
p4=shift(-27,-24)*scale(3)*p,
p1=shift(-53,-24)*scale(4)*p;
pair A=(-53,-24), B=(-8,16), C=(12,-24), D=(-17,8), E=(-1,-24), F=origin, G=(-13,0), H=(-9,-8);
label("1", centroid(A,D,E));
label("2", centroid(F,G,H));
label("3", (-10,6));
label("4", (0,-15));
draw(p2^^p3^^p4);
filldraw(p1, white, black);
pair point = centroid(F,G,H);
label("$\mathbf{A}$", A, dir(point--A));
label("$\mathbf{B}$", B, dir(point--B));
label("$\mathbf{C}$", C, dir(point--C));
label("$\mathbf{D}$", D, dir(point--D));
label("$\mathbf{E}$", E, dir(point--E));
label("$\mathbf{F}$", F, dir(point--F));
label("$\mathbf{G}$", G, dir(point--G));
label("$\mathbf{H}$", H, dir(point--H));
real x=90;
draw(shift(x)*p1);
label("1", centroid(shift(x)*A,shift(x)*D,shift(x)*E));
draw(shift(130,0)*p4);
draw(shift(130,0)*shift(-27,-24)*p);
draw(shift(130,0)*shift(-1,-24)*p3);
label("2", shift(130,0)*shift(-27,-24)*centroid(F,(9,8),(13,0)));
label("3", shift(130,0)*shift(-1,-24)*(-10,6));
label("4", shift(130,0)*(0,-15));
label("Piece 2 rotated $180^\circ$", (130,10));[/asy]
2006 Greece Junior Math Olympiad, 1
Let $P$ an interior point of an equilateral triangle $ABC$. Prove that there exists triangle with sides $PA , PB , PC$ .
Babis
2013 AMC 8, 24
Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ ad $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?
[asy]
pair A,B,C,D,E,F,G,H,I,J;
A = (0.5,2);
B = (1.5,2);
C = (1.5,1);
D = (0.5,1);
E = (0,1);
F = (0,0);
G = (1,0);
H = (1,1);
I = (2,1);
J = (2,0);
draw(A--B);
draw(C--B);
draw(D--A);
draw(F--E);
draw(I--J);
draw(J--F);
draw(G--H);
draw(A--J);
filldraw(A--B--C--I--J--cycle,grey);
draw(E--I);
dot("$A$", A, NW);
dot("$B$", B, NE);
dot("$C$", C, NE);
dot("$D$", D, NW);
dot("$E$", E, NW);
dot("$F$", F, SW);
dot("$G$", G, S);
dot("$H$", H, N);
dot("$I$", I, NE);
dot("$J$", J, SE);[/asy]
$\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac7{24} \qquad \textbf{(C)}\ \frac13 \qquad \textbf{(D)}\ \frac38 \qquad \textbf{(E)}\ \frac5{12}$
1999 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 2
There are 8 members in a a bridge committee (committee for making bridges). Of these 8 members, 3 are chosen to be in special "approval" committee with 1 of 3 members being the "boss." In how many ways can this happen?
1992 AMC 8, 12
The five tires of a car (four road tires and a full-sized spare) were rotated so that each tire was used the same number of miles during the first $30,000$ miles the car traveled. For how many miles was each tire used?
$\text{(A)}\ 6000 \qquad \text{(B)}\ 7500 \qquad \text{(C)}\ 24,000 \qquad \text{(D)}\ 30,000 \qquad \text{(E)}\ 37,500$
2012 Canadian Mathematical Olympiad Qualification Repechage, 8
Suppose circles $\mathit{W}_1$ and $\mathit{W}2$, with centres $\mathit{O}_1$ and $\mathit{O}_2$ respectively, intersect at points $\mathit{M}$ and $\mathit{N}$. Let the tangent on $\mathit{W}_2$ at point $\mathit{N}$ intersect $\mathit{W}_1$ for the second time at $\mathit{B}_1$. Similarly, let the tangent on $\mathit{W}_1$ at point $\mathit{N}$ intersect $\mathit{W}_2$ for the second time at $\mathit{B}_2$. Let $\mathit{A}_1$ be a point on $\mathit{W}_1$ which is on arc $\mathit{B}_1\mathit{N}$ not containing $\mathit{M}$ and suppose line $\mathit{A}_1\mathit{N}$ intersects $\mathit{W}_2$ at point $\mathit{A}_2$. Denote the incentres of triangles $\mathit{B}_1\mathit{A}_1\mathit{N}$ and $\mathit{B}_2\mathit{A}_2\mathit{N}$ by $\mathit{I}_1$ and $\mathit{I}_2$, respectively.*
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.1cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -0.9748626324969808, xmax = 13.38440254515721, ymin = 0.5680051903627492, ymax = 10.99430986899034; /* image dimensions */
pair O_2 = (7.682929606970993,6.084708172218866), O_1 = (2.180000000000002,6.760000000000007), M = (4.560858774883258,8.585242858926296), B_2 = (10.07334553576748,9.291873850408265), A_2 = (11.49301008867042,4.866805580476367), B_1 = (2.113311869970955,9.759258690628950), A_1 = (0.2203184186713625,4.488514120712773);
/* draw figures */
draw(circle(O_2, 4.000000000000000));
draw(circle(O_1, 3.000000000000000));
draw((4.048892687647541,4.413249028538064)--B_2);
draw(B_2--A_2);
draw(A_2--(4.048892687647541,4.413249028538064));
draw((4.048892687647541,4.413249028538064)--B_1);
draw(B_1--A_1);
draw(A_1--(4.048892687647541,4.413249028538064));
/* dots and labels */
dot(O_2,dotstyle);
label("$O_2$", (7.788512439159622,6.243082420501817), NE * labelscalefactor);
dot(O_1,dotstyle);
label("$O_1$", (2.298205165350667,6.929370829727937), NE * labelscalefactor);
dot(M,dotstyle);
label("$M$", (4.383466101076183,8.935444641311980), NE * labelscalefactor);
dot((4.048892687647541,4.413249028538064),dotstyle);
label("$N$", (3.855551940133015,3.761885864068922), NE * labelscalefactor);
dot(B_2,dotstyle);
label("$B_2$", (10.19052187145104,9.463358802255147), NE * labelscalefactor);
dot(A_2,dotstyle);
label("$A_2$", (11.80066006232771,4.659339937672310), NE * labelscalefactor);
dot(B_1,dotstyle);
label("$B_1$", (1.981456668784765,10.09685579538695), NE * labelscalefactor);
dot(A_1,dotstyle);
label("$A_1$", (0.08096568938935705,3.973051528446190), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
Show that \[\angle\mathit{I}_1\mathit{MI}_2=\angle\mathit{O}_1\mathit{MO}_2.\]
*[size=80]Given a triangle ABC, the incentre of the triangle is defined to be the intersection of the angle bisectors of A, B, and C. To avoid cluttering, the incentre is omitted in the provided diagram. Note also that the diagram serves only as an aid and is not necessarily drawn to scale.[/size]
2003 AIME Problems, 6
In triangle $ABC,$ $AB=13,$ $BC=14,$ $AC=15,$ and point $G$ is the intersection of the medians. Points $A',$ $B',$ and $C',$ are the images of $A,$ $B,$ and $C,$ respectively, after a $180^\circ$ rotation about $G.$ What is the area if the union of the two regions enclosed by the triangles $ABC$ and $A'B'C'?$
1994 AIME Problems, 8
The points $(0,0),$ $(a,11)$, and $(b,37)$ are the vertices of an equilateral triangle. Find the value of $ab$.
2007 AMC 12/AHSME, 16
Each face of a regular tetrahedron is painted either red, white or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible?
$ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 54 \qquad \textbf{(E)}\ 81$
2009 Sharygin Geometry Olympiad, 4
Let $ P$ and $ Q$ be the common points of two circles. The ray with origin $ Q$ reflects from the first circle in points $ A_1$, $ A_2$,$ \ldots$ according to the rule ''the angle of incidence is equal to the angle of reflection''. Another ray with origin $ Q$ reflects from the second circle in the points $ B_1$, $ B_2$,$ \ldots$ in the same manner. Points $ A_1$, $ B_1$ and $ P$ occurred to be collinear. Prove that all lines $ A_iB_i$ pass through P.
2012 AMC 10, 11
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?
$ \textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304 $
2007 Purple Comet Problems, 18
Let $S$ be the graph of $y=x^3$, and $T$ be the graph of $y=\sqrt[3]{y}$. Let $S^*$ be $S$ rotated around the origin $15$ degrees clockwise, and $T^*$ be T rotated around the origin 45 degrees counterclockwise. $S^*$ and $T^*$ will intersect at a point in the first quadrant a distance $M+\sqrt{N}$ from the origin where $M$ and $N$ are positive integers. Find $M+N$.
2004 All-Russian Olympiad, 1
Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.
1978 Romania Team Selection Test, 2
Points $ A’,B,C’ $ are arbitrarily taken on edges $ SA,SB, $ respectively, $ SC $ of a tetrahedron $ SABC. $ Plane forrmed by $ ABC $ intersects the plane $ \rho , $ formed by $ A’B’C’, $ in a line $ d. $ Prove that, meanwhile the plane $ \rho $ rotates around $ d, $ the lines $ AA’,BB’ $ and $ CC’ $ are, and remain concurrent. Find de locus of the respective intersections.
1992 China Team Selection Test, 2
A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.
1999 Vietnam Team Selection Test, 3
Let a convex polygon $H$ be given. Show that for every real number $a \in (0, 1)$ there exist 6 distinct points on the sides of $H$, denoted by $A_1, A_2, \ldots, A_6$ clockwise, satisfying the conditions:
[b]I.[/b] $(A_1A_2) = (A_5A_4) = a \cdot (A_6A_3)$.
[b]II.[/b] Lines $A_1A_2, A_5A_4$ are equidistant from $A_6A_3$.
(By $(AB)$ we denote vector $AB$)
1991 Arnold's Trivium, 92
Find the orders of the subgroups of the group of rotations of the cube, and find its normal subgroups.