Found problems: 567
1999 Cono Sur Olympiad, 6
An ant walks across the floor of a circular path of radius $r$ and moves in a straight line, but sometimes stops. Each time it stops, before resuming the march, it rotates $60^o$ alternating the direction (if the last time it turned $60^o$ to its right, the next one does it $60^o$ to its left, and vice versa). Find the maximum possible length of the path the ant goes through. Prove that the length found is, in fact, as long as possible.
Figure: turn $60^o$ to the right .
2024 AMC 12/AHSME, 19
Equilateral $\triangle ABC$ with side length $14$ is rotated about its center by angle $\theta$, where $0 < \theta < 60^{\circ}$, to form $\triangle DEF$. The area of hexagon $ADBECF$ is $91\sqrt{3}$. What is $\tan\theta$?
[asy]
defaultpen(fontsize(13)); size(200);
pair O=(0,0),A=dir(225),B=dir(-15),C=dir(105),D=rotate(38.21,O)*A,E=rotate(38.21,O)*B,F=rotate(38.21,O)*C;
draw(A--B--C--A,gray+0.4);draw(D--E--F--D,gray+0.4); draw(A--D--B--E--C--F--A,black+0.9); dot(O); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$E$",E,dir(E)); dot("$F$",F,dir(F));
[/asy]
$\textbf{(A)}~\displaystyle\frac{3}{4}\qquad\textbf{(B)}~\displaystyle\frac{5\sqrt{3}}{11}\qquad\textbf{(C)}~\displaystyle\frac{4}{5}\qquad\textbf{(D)}~\displaystyle\frac{11}{13}\qquad\textbf{(E)}~\displaystyle\frac{7\sqrt{3}}{13}$
1985 ITAMO, 9
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
2009 Romania Team Selection Test, 1
Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.
III Soros Olympiad 1996 - 97 (Russia), 11.2
It is known that the graph of the function $y = f(x)$ after a rotation of $45^o$ around a certain point turns into the graph of the function $y = x^3 + ax^2 + 19x + 97$. At what $a$ is this possible?
2002 AIME Problems, 13
In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.
2014 France Team Selection Test, 2
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2010 Today's Calculation Of Integral, 668
Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$.
(1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$.
(2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$.
[i]2011 Kyorin University entrance exam/Medicine [/i]
2014 USAMO, 4
Let $k$ be a positive integer. Two players $A$ and $B$ play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with $A$ moving first. In his move, $A$ may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, $B$ may choose any counter on the board and remove it. If at any time there are $k$ consecutive grid cells in a line all of which contain a counter, $A$ wins. Find the minimum value of $k$ for which $A$ cannot win in a finite number of moves, or prove that no such minimum value exists.
2024 Dutch BxMO/EGMO TST, IMO TSTST, 4
Let $n$ be a positive with $n\geq 3$. Consider a board of $n \times n$ boxes. In each step taken the colors of the $5$ boxes that make up the figure bellow change color (black boxes change to white and white boxes change to black)
The figure can be rotated $90°, 180°$ or $270°$.
Firstly, all the boxes are white.Determine for what values of $n$ it can be achieved, through a series of steps, that all the squares on the board are black.
2021 AMC 10 Spring, 9
The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^{\circ}$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a$?
$\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$
2019 Czech-Polish-Slovak Junior Match, 5
Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.
1977 Canada National Olympiad, 2
Let $O$ be the centre of a circle and $A$ a fixed interior point of the circle different from $O$. Determine all points $P$ on the circumference of the circle such that the angle $OPA$ is a maximum.
[asy]
import graph;
unitsize(2 cm);
pair A, O, P;
A = (0.5,0.2);
O = (0,0);
P = dir(80);
draw(Circle(O,1));
draw(O--A--P--cycle);
label("$A$", A, E);
label("$O$", O, S);
label("$P$", P, N);
[/asy]
2007 Iran MO (3rd Round), 1
Consider two polygons $ P$ and $ Q$. We want to cut $ P$ into some smaller polygons and put them together in such a way to obtain $ Q$. We can translate the pieces but we can not rotate them or reflect them. We call $ P,Q$ equivalent if and only if we can obtain $ Q$ from $ P$(which is obviously an equivalence relation).
[img]http://i3.tinypic.com/4lrb43k.png[/img]
a) Let $ P,Q$ be two rectangles with the same area(their sides are not necessarily parallel). Prove that $ P$ and $ Q$ are equivalent.
b) Prove that if two triangles are not translation of each other, they are not equivalent.
c) Find a necessary and sufficient condition for polygons $ P,Q$ to be equivalent.
2005 Polish MO Finals, 3
In a matrix $2n \times 2n$, $n \in N$, are $4n^2$ real numbers with a sum equal zero. The absolute value of each of these numbers is not greater than $1$. Prove that the absolute value of a sum of all the numbers from one column or a row doesn't exceed $n$.
2001 Junior Balkan Team Selection Tests - Romania, 3
In the interior of a circle centred at $O$ consider the $1200$ points $A_1,A_2,\ldots ,A_{1200}$, where for every $i,j$ with $1\le i\le j\le 1200$, the points $O,A_i$ and $A_j$ are not collinear. Prove that there exist the points $M$ and $N$ on the circle, with $\angle MON=30^{\circ}$, such that in the interior of the angle $\angle MON$ lie exactly $100$ points.
1969 AMC 12/AHSME, 10
The number of points equidistant from a circle and two parallel tangents to the circle is:
$\textbf{(A) }0\qquad
\textbf{(B) }2\qquad
\textbf{(C) }3\qquad
\textbf{(D) }4\qquad
\textbf{(E) }\text{infinite}$
Today's calculation of integrals, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
2017 CMIMC Individual Finals, 3
The parabola $\mathcal P$ given by equation $y=x^2$ is rotated some acute angle $\theta$ clockwise about the origin such that it hits both the $x$ and $y$ axes at two distinct points. Suppose the length of the segment $\mathcal P$ cuts the $x$-axis is $1$. What is the length of the segment $\mathcal P$ cuts the $y$-axis?
2009 AIME Problems, 2
There is a complex number $ z$ with imaginary part $ 164$ and a positive integer $ n$ such that
\[ \frac {z}{z \plus{} n} \equal{} 4i.
\]Find $ n$.
2003 Federal Competition For Advanced Students, Part 2, 2
Let $a, b, c$ be nonzero real numbers for which there exist $\alpha, \beta, \gamma \in\{-1, 1\}$ with $\alpha a + \beta b + \gamma c = 0$. What is the smallest possible value of
\[\left( \frac{a^3+b^3+c^3}{abc}\right)^2 ?\]
1996 Estonia National Olympiad, 3
An equilateral triangle of side$ 1$ is rotated around its center, yielding another equilareral triangle. Find the area of the intersection of these two triangles.
2024 Dutch BxMO/EGMO TST, IMO TSTST, 4
Let $n$ be a positive with $n\geq 3$. Consider a board of $n \times n$ boxes. In each step taken the colors of the $5$ boxes that make up the figure bellow change color (black boxes change to white and white boxes change to black)
The figure can be rotated $90°, 180°$ or $270°$.
Firstly, all the boxes are white.Determine for what values of $n$ it can be achieved, through a series of steps, that all the squares on the board are black.
2015 HMNT, 10-18
10) Call a string of letters $S$ an [i]almost-palindrome[/i] if $S$ and the reverse of $S$ differ in exactly $2$ places. Find the number of ways to order the letters in $HMMTTHEMETEAM$ to get an almost-palindrome.
11) Find all integers $n$, not necessarily positive, for which there exist positive integers ${a,b,c}$ satisfying $a^n + b^n = c^n$.
12) Let $a$ and $b$ be positive real numbers. Determine the minimum possible value of $\sqrt{a^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{(a-1)^2 + (b-1)^2}$.
13) Consider a $4$ x $4$ grid of squares, each originally colored red. Every minute, Piet can jump on any of the squares, changing the color of it and any adjacent squares to blue (two squares are adjacent if they share a side). What is the minimum number of minutes it will take Piet to change the entire grid to blue?
14) Let $ABC$ be an acute triangle with orthocenter $H$. Let ${D,E}$ be the feet of the ${A,B}$-altitudes, respectively. Given that $\overline{AH} = 20$ and $\overline{HD} =16$ and $\overline{BE} = 56$, find the length of $\overline{BH}$.
15) Find the smallest positive integer $b$ such that $1111 _b$ ($1111$ in base $b$) is a perfect square. If no such $b$ exists, write "No Solution"
16) For how many triples $( {x,y,z} )$ of integers between $-10$ and $10$, inclusive, do there exist reals ${a,b,c}$ that satisfy
$ab = x$
$ac = y$
$bc = z$?
17) Unit squares $ABCD$ and $EFGH$ have centers $O_1$ and $O_2$, respectively, and are originally oriented so that $B$ and $E$ are at the same position and $C$ and $H$ are at the same position. The squares then rotate clockwise around their centers at a rate of one revolution per hour. After $5$ minutes, what is the area of the intersection of the two squares?
18) A function $f$ satisfies, for all
nonnegative integers $x$ and $y$,
$f(x,0) = f(0,x) = x$
If $x \ge y \ge 0$, $f(x,y)=f(x-y,y)+1$
If $y \ge x \ge 0$, $f(x,y) = f(x,y-x)+1$
Find the maximum value of $f$ over $0 \le x,y \le 100$.
1983 IMO Longlists, 12
The number $0$ or $1$ is to be assigned to each of the $n$ vertices of a regular polygon. In how many different ways can this be done (if we consider two assignments that can be obtained one from the other through rotation in the plane of the polygon to be identical)?