This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 321

1963 AMC 12/AHSME, 38

Point $F$ is taken on the extension of side $AD$ of parallelogram $ABCD$. $BF$ intersects diagonal $AC$ at $E$ and side $DC$ at $G$. If $EF = 32$ and $GF = 24$, then $BE$ equals: [asy] size(7cm); pair A = (0, 0), B = (7, 0), C = (10, 5), D = (3, 5), F = (5.7, 9.5); pair G = intersectionpoints(B--F, D--C)[0]; pair E = intersectionpoints(A--C, B--F)[0]; draw(A--D--C--B--cycle); draw(A--C); draw(D--F--B); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$F$", F, N); label("$G$", G, NE); label("$E$", E, SE); //Credit to MSTang for the asymptote [/asy] $\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 16$

2013 India Regional Mathematical Olympiad, 4

Let $ABC$ be a triangle with $\angle A=90^{\circ}$ and $AB=AC$. Let $D$ and $E$ be points on the segment $BC$ such that $BD:DE:EC = 1:2:\sqrt{3}$. Prove that $\angle DAE= 45^{\circ}$

1984 AMC 12/AHSME, 27

In $\triangle ABC$, $D$ is on $AC$ and $F$ is on $BC$. Also, $AB \perp AC, AF \perp BC$, and $BD = DC = FC = 1$. Find $AC$. A. $\sqrt{2}$ B. $\sqrt{3}$ C. $\sqrt[3] {2}$ D. $\sqrt[3] {3}$ E. $\sqrt[4] {3}$

2018 AIME Problems, 13

Let \(\triangle ABC\) have side lengths \(AB=30\), \(BC=32\), and \(AC=34\). Point \(X\) lies in the interior of \(\overline{BC}\), and points \(I_1\) and \(I_2\) are the incenters of \(\triangle ABX\) and \(\triangle ACX\), respectively. Find the minimum possible area of \(\triangle AI_1I_2\) as \( X\) varies along \(\overline{BC}\).

2017 IMO Shortlist, G3

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2005 Danube Mathematical Olympiad, 3

Let $\mathcal{C}$ be a circle with center $O$, and let $A$ be a point outside the circle. Let the two tangents from the point $A$ to the circle $\mathcal{C}$ meet this circle at the points $S$ and $T$, respectively. Given a point $M$ on the circle $\mathcal{C}$ which is different from the points $S$ and $T$, let the line $MA$ meet the perpendicular from the point $S$ to the line $MO$ at $P$. Prove that the reflection of the point $S$ in the point $P$ lies on the line $MT$.

2022 Sharygin Geometry Olympiad, 15

A line $l$ parallel to the side $BC$ of triangle $ABC$ touches its incircle and meets its circumcircle at points $D$ and $E$. Let $I$ be the incenter of $ABC$. Prove that $AI^2 = AD \cdot AE$.

2018 Romania Team Selection Tests, 1

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2006 Sharygin Geometry Olympiad, 9.3

Triangles $ABC$ and $A_1B_1C_1$ are similar and differently oriented. On the segment $AA_1$, a point $A'$ is taken such that $AA' / A_1A'= BC / B_1C_1$. We similarly construct $B'$ and $C'$. Prove that $A', B',C'$ lie on one straight line.

2005 China Western Mathematical Olympiad, 2

Given three points $P$, $A$, $B$ and a circle such that the lines $PA$ and $PB$ are tangent to the circle at the points $A$ and $B$, respectively. A line through the point $P$ intersects that circle at two points $C$ and $D$. Through the point $B$, draw a line parallel to $PA$; let this line intersect the lines $AC$ and $AD$ at the points $E$ and $F$, respectively. Prove that $BE = BF$.

1967 AMC 12/AHSME, 15

The difference in the areas of two similar triangles is $18$ square feet, and the ratio of the larger area to the smaller is the square of an integer. The area of the smaller triange, in square feet, is an integer, and one of its sides is $3$ feet. The corresponding side of the larger triangle, in feet, is: $\textbf{(A)}\ 12\quad \textbf{(B)}\ 9\qquad \textbf{(C)}\ 6\sqrt{2}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 3\sqrt{2}$

2012 AMC 10, 19

In rectangle $ABCD$, $AB=6$, $AD=30$, and $G$ is the midpoint of $\overline{AD}$. Segment $AB$ is extended $2$ units beyond $B$ to point $E$, and $F$ is the intersection of $\overline{ED}$ and $\overline{BC}$. What is the area of $BFDG$? $ \textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}$

2013 Harvard-MIT Mathematics Tournament, 1

Arpon chooses a positive real number $k$. For each positive integer $n$, he places a marker at the point $(n,nk)$ in the $(x,y)$ plane. Suppose that two markers whose $x$-coordinates differ by $4$ have distance $31$. What is the distance between the markers $(7,7k)$ and $(19,19k)$?

2010 Purple Comet Problems, 14

Let $ABCD$ be a trapezoid where $AB$ is parallel to $CD.$ Let $P$ be the intersection of diagonal $AC$ and diagonal $BD.$ If the area of triangle $PAB$ is $16,$ and the area of triangle $PCD$ is $25,$ find the area of the trapezoid.

2012 Online Math Open Problems, 20

Let $ABC$ be a right triangle with a right angle at $C.$ Two lines, one parallel to $AC$ and the other parallel to $BC,$ intersect on the hypotenuse $AB.$ The lines split the triangle into two triangles and a rectangle. The two triangles have areas $512$ and $32.$ What is the area of the rectangle? [i]Author: Ray Li[/i]

2016 Sharygin Geometry Olympiad, 2

Let $H$ be the orthocenter of an acute-angled triangle $ABC$. Point $X_A$ lying on the tangent at $H$ to the circumcircle of triangle $BHC$ is such that $AH=AX_A$ and $X_A \not= H$. Points $X_B,X_C$ are defined similarly. Prove that the triangle $X_AX_BX_C$ and the orthotriangle of $ABC$ are similar.

1985 ITAMO, 4

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985. [asy] size(200); pair A=(0,1), B=(1,1), C=(1,0), D=origin; draw(A--B--C--D--A--(1,1/6)); draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1)); pair point=( 0.5 , 0.5 ); //label("$A$", A, dir(point--A)); //label("$B$", B, dir(point--B)); //label("$C$", C, dir(point--C)); //label("$D$", D, dir(point--D)); label("$1/n$", (11/12,1), N, fontsize(9));[/asy]

2005 Bulgaria National Olympiad, 4

Let $ABC$ be a triangle with $AC\neq BC$, and let $A^{\prime }B^{\prime }C$ be a triangle obtained from $ABC$ after some rotation centered at $C$. Let $M,E,F$ be the midpoints of the segments $BA^{\prime },AC$ and $CB^{\prime }$ respectively. If $EM=FM$, find $\widehat{EMF}$.

2006 Grigore Moisil Intercounty, 1

Let $ABC$ be a triangle with $b\neq c$. Points $D$ is the midpoint of $BC$ and let $E$ be the foot of angle $A$ bisector. In the exterior of the triangle we construct the similar triangles $AMB$ and $ANC$ . Prove: a) $MN\bot AD \Longleftrightarrow MA \bot AB$ b) $MN\bot AE \Longleftrightarrow M,A,N$ are colinear.

2009 Baltic Way, 14

For which $n\ge 2$ is it possible to find $n$ pairwise non-similar triangles $A_1, A_2,\ldots , A_n$ such that each of them can be divided into $n$ pairwise non-similar triangles, each of them similar to one of $A_1,A_2 ,\ldots ,A_n$?

1995 National High School Mathematics League, 4

Color all points on a plane in red or blue. Prove that there exists two similar triangles, their similarity ratio is $1995$, and apexes of both triangles are in the same color.

2014 AMC 12/AHSME, 21

In the figure, $ABCD$ is a square of side length 1. The rectangles $JKHG$ and $EBCF$ are congruent. What is $BE$? [asy] unitsize(150); pair A,B,C,D,E,F,G,H,J,K; A=(1,0); B=(0,0); C=(0,1); D=(1,1); draw(A--B--C--D--A); E=(2-sqrt(3),0); F=(2-sqrt(3),1); draw(E--F); G=(1,sqrt(3)/2); H=(2.5-sqrt(3),1); K=(2-sqrt(3),1-sqrt(3)/2); J=(0.5,0); draw(G--H--K--J--G); label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$E$",E,S); label("$F$",F,N); label("$G$",G,E); label("$H$",H,N); label("$K$",K,W); label("$J$",J,S); [/asy] $ \textbf{(A) }\dfrac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\dfrac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\dfrac{\sqrt{3}}{6}\qquad\textbf{(E) }1-\dfrac{\sqrt{2}}{2} $

2012 Danube Mathematical Competition, 2

Let $ABC$ be an acute triangle and let $A_1$, $B_1$, $C_1$ be points on the sides $BC, CA$ and $AB$, respectively. Show that the triangles $ABC$ and $A_1B_1C_1$ are similar ($\angle A = \angle A_1, \angle B = \angle B_1,\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle $ABC$ coincide.

2018 AMC 8, 20

In $\triangle ABC,$ a point $E$ is on $\overline{AB}$ with $AE=1$ and $EB=2.$ Point $D$ is on $\overline{AC}$ so that $\overline{DE} \parallel \overline{BC}$ and point $F$ is on $\overline{BC}$ so that $\overline{EF} \parallel \overline{AC}.$ What is the ratio of the area of $CDEF$ to the area of $\triangle ABC?$ [asy] size(7cm); pair A,B,C,DD,EE,FF; A = (0,0); B = (3,0); C = (0.5,2.5); EE = (1,0); DD = intersectionpoint(A--C,EE--EE+(C-B)); FF = intersectionpoint(B--C,EE--EE+(C-A)); draw(A--B--C--A--DD--EE--FF,black+1bp); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",DD,W); label("$E$",EE,S); label("$F$",FF,NE); label("$1$",(A+EE)/2,S); label("$2$",(EE+B)/2,S); [/asy] $\textbf{(A) } \frac{4}{9} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{5}{9} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{2}{3}$

2011 Tournament of Towns, 3

(a) Does there exist an in nite triangular beam such that two of its cross-sections are similar but not congruent triangles? (b) Does there exist an in nite triangular beam such that two of its cross-sections are equilateral triangles of sides $1$ and $2$ respectively?