Found problems: 321
2009 Purple Comet Problems, 14
Rectangle $ABCD$ measures $70$ by $40$. Eighteen points (including $A$ and $C$) are marked on the diagonal $AC$ dividing the diagonal into $17$ congruent pieces. Twenty-two points (including A and B) are marked on the side $AB$ dividing the side into $21$ congruent pieces. Seventeen non-overlapping triangles are constructed as shown. Each triangle has two vertices that are two of these adjacent marked points on the side of the rectangle, and one vertex that is one of the marked points along the diagonal of the rectangle. Only the left $17$ of the $21$ congruent pieces along the side of the rectangle are used as bases of these triangles. Find the sum of the areas of these $17$ triangles.
[asy]
size(200);
defaultpen(linewidth(0.8));
pair A=origin,B=(21,0),C=(21,12),D=(0,12);
path P=origin;
draw(A--B--C--D--cycle--C);
for (int r = 1; r <= 17;++r) {
P=P--(21*r/17,12*r/17)--(r,0);
}
P=P--cycle;
filldraw(P,gray(0.7));
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,NE);
label("$D$",D,NW);
[/asy]
IV Soros Olympiad 1997 - 98 (Russia), 11.6
It is known that the bisector of the angle $\angle ADC$ of the inscribed quadrilateral $ABCD$ passes through the center of the circle inscribed in the triangle $ABC$. Let $M$ be an arbitrary point of the arc $ABC$ of the circle circumscribed around $ABCD$. Denote by $P$ and $Q$ the centers of the circles inscribed in the triangles $ABM$ and $BCM$.
Prove that all triangles $DPQ$ obtained by moving point $M$ are similar to each other. Find the angle $\angle PDQ$ and ratio $BP : PQ$ if $\angle BAC = \alpha$, $\angle BCA = \beta$
2018 JBMO Shortlist, G5
Given a rectangle $ABCD$ such that $AB = b > 2a = BC$, let $E$ be the midpoint of $AD$. On a line parallel to $AB$ through point $E$, a point $G$ is chosen such that the area of $GCE$ is
$$(GCE)= \frac12 \left(\frac{a^3}{b}+ab\right)$$
Point $H$ is the foot of the perpendicular from $E$ to $GD$ and a point $I$ is taken on the diagonal $AC$ such that the triangles $ACE$ and $AEI$ are similar. The lines $BH$ and $IE$ intersect at $K$ and the lines $CA$ and $EH$ intersect at $J$. Prove that $KJ \perp AB$.
2018 Regional Olympiad of Mexico West, 3
A scalene acute triangle $ABC$ is drawn on the plane, in which $BC$ is the longest side. Points $P$ and $D$ are constructed, the first inside $ABC$ and the second outside, so that $\angle ABC = \angle CBD$, $\angle ACP = \angle BCD$ and that the area of triangle $ABC$ is equal to the area of quadrilateral $BPCD$. Prove that triangles $BCD$ and $ACP$ are similar.
2001 AIME Problems, 7
Let $\triangle{PQR}$ be a right triangle with $PQ=90$, $PR=120$, and $QR=150$. Let $C_{1}$ be the inscribed circle. Construct $\overline{ST}$ with $S$ on $\overline{PR}$ and $T$ on $\overline{QR}$, such that $\overline{ST}$ is perpendicular to $\overline{PR}$ and tangent to $C_{1}$. Construct $\overline{UV}$ with $U$ on $\overline{PQ}$ and $V$ on $\overline{QR}$ such that $\overline{UV}$ is perpendicular to $\overline{PQ}$ and tangent to $C_{1}$. Let $C_{2}$ be the inscribed circle of $\triangle{RST}$ and $C_{3}$ the inscribed circle of $\triangle{QUV}$. The distance between the centers of $C_{2}$ and $C_{3}$ can be written as $\sqrt{10n}$. What is $n$?
1973 All Soviet Union Mathematical Olympiad, 182
Three similar acute-angled triangles $AC_1B, BA_1C$ and $CB_1A$ are constructed on the outer side of the acute-angled triangle $ABC$. (Equal triples of the angles are $AB_1C, ABC_1, A_1BC$ and $BA_1C, BAC_1, B_1AC$.)
a) Prove that the circles circumscribed around the outer triangles intersect in one point.
b) Prove that the straight lines $AA_1, BB_1$ and $CC_1$ intersect in the same point
2014 District Olympiad, 3
Let $ABC$ be a triangle in which $\measuredangle{A}=135^{\circ}$. The perpendicular to the line $AB$ erected at $A$ intersects the side $BC$ at $D$, and the angle bisector of $\angle B$ intersects the side $AC$ at $E$.
Find the measure of $\measuredangle{BED}$.
1971 Canada National Olympiad, 9
Two flag poles of height $h$ and $k$ are situated $2a$ units apart on a level surface. Find the set of all points on the surface which are so situated that the angles of elevation of the tops of the poles are equal.
Geometry Mathley 2011-12, 13.4
Let $P$ be an arbitrary point in the plane of triangle $ABC$. Lines $PA, PB, PC$ meets the perpendicular bisectors of $BC,CA,AB$ at $O_a,O_b,O_c$ respectively. Let $(O_a)$ be the circle with center $O_a$ passing through two points $B,C$, two circles $(O_b), (O_c)$ are defined in the same manner. Two circles $(O_b), (O_c)$ meets at $A_1$, distinct from $A$. Points $B_1,C_1$ are defined in the same manner. Let $Q$ be an arbitrary point in the plane of $ABC$ and $QB,QC$ meets $(O_c)$ and $(O_b)$ at $A_2,A_3$ distinct from $B,C$. Similarly, we have points $B_2,B_3,C_2,C_3$. Let $(K_a), (K_b), (K_c)$ be the circumcircles of triangles $A_1A_2A_3, B_1B_2B_3, C_1C_2C_3$. Prove that
(a) three circles $(K_a), (K_b), (K_c)$ have a common point.
(b) two triangles $K_aK_bK_c, ABC$ are similar.
Trần Quang Hùng
2013 AMC 12/AHSME, 19
In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $?
$ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $
1996 All-Russian Olympiad Regional Round, 11.7
In triangle $ABC$, a point $O$ is taken such that $\angle COA = \angle B + 60^o$, $\angle COB = \angle A + 60^o$, $\angle AOB = \angle C + 60^o$.Prove that if a triangle can be formed from the segments $AO$, $BO$, $CO$, then a triangle can also be formed from the altitudes of triangle $ABC$ and these triangles are similar.
2018 Taiwan TST Round 3, 4
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
1996 China National Olympiad, 1
Let $\triangle{ABC}$ be a triangle with orthocentre $H$. The tangent lines from $A$ to the circle with diameter $BC$ touch this circle at $P$ and $Q$. Prove that $H,P$ and $Q$ are collinear.
1979 IMO Longlists, 6
Prove that $\frac 12 \cdot \sqrt{4\sin^2 36^{\circ} - 1}=\cos 72^\circ$.
2009 International Zhautykov Olympiad, 2
Given a quadrilateral $ ABCD$ with $ \angle B\equal{}\angle D\equal{}90^{\circ}$. Point $ M$ is chosen on segment $ AB$ so taht $ AD\equal{}AM$. Rays $ DM$ and $ CB$ intersect at point $ N$. Points $ H$ and $ K$ are feet of perpendiculars from points $ D$ and $ C$ to lines $ AC$ and $ AN$, respectively.
Prove that $ \angle MHN\equal{}\angle MCK$.
2018 Bosnia and Herzegovina Team Selection Test, 6
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 4
Given three squares as in the figure (where the vertex of B is touching square A --- the diagram had an error), where the largest square has area 1, and the area $ A$ is known. What is the area $ B$ of the smallest square?
[img]http://i250.photobucket.com/albums/gg265/geometry101/NielsHenrikAbel1995Number4.jpg[/img]
A. $ A/8$
B. $ \frac {A^2}{2}$
C. $ \frac {A^4}{4}$
D. $ A(1 \minus{} A)$
E. $ \frac {(1 \minus{} A)^2}{4}$
2020 Lusophon Mathematical Olympiad, 4
Let $ABC$ be an acute triangle. Its incircle touches the sides $BC$, $CA$ and $AB$ at the points $D$, $E$ and $F$, respectively. Let $P$, $Q$ and $R$ be the circumcenters of triangles $AEF$, $BDF$ and $CDE$, respectively. Prove that triangles $ABC$ and $PQR$ are similar.
2008 Regional Olympiad of Mexico Center Zone, 2
Let $ABC$ be a triangle with incenter $I $, the line $AI$ intersects $BC$ at $ L$ and the circumcircle of $ABC$ at $L'$. Show that the triangles $BLI$ and $L'IB$ are similar if and only if $AC = AB + BL$.
2019 Dürer Math Competition (First Round), P5
Let $ABC$ and $A'B'C'$ be similar triangles with different orientation such that their orthocenters coincide. Show that lines $AA′, BB′, CC′ are concurrent or parallel.
2012 AMC 10, 15
Three unit squares and two line segments connecting two pairs of vertices are shown. What is the area of $\triangle ABC$?
[asy]
size(200);
defaultpen(linewidth(.6pt)+fontsize(12pt));
dotfactor=4;
draw((0,0)--(0,2));
draw((0,0)--(1,0));
draw((1,0)--(1,2));
draw((0,1)--(2,1));
draw((0,0)--(1,2));
draw((0,2)--(2,1));
draw((0,2)--(2,2));
draw((2,1)--(2,2));
label("$A$",(0,2),NW);
label("$B$",(1,2),N);
label("$C$",(4/5,1.55),W);
dot((0,2));
dot((1,2));
dot((4/5,1.6));
dot((2,1));
dot((0,0));
[/asy]
$ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{2}{9}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt2}{4} $
2014 Online Math Open Problems, 11
Given a triangle $ABC$, consider the semicircle with diameter $\overline{EF}$ on $\overline{BC}$ tangent to $\overline{AB}$ and $\overline{AC}$. If $BE=1$, $EF=24$, and $FC=3$, find the perimeter of $\triangle{ABC}$.
[i]Proposed by Ray Li[/i]
2012 Purple Comet Problems, 26
A paper cup has a base that is a circle with radius $r$, a top that is a circle with radius $2r$, and sides that connect the two circles with straight line segments as shown below. This cup has height $h$ and volume $V$. A second cup that is exactly the same shape as the first is held upright inside the first cup so that its base is a distance of $\tfrac{h}2$ from the base of the first cup. The volume of liquid that will t inside the first cup and outside the second cup can be written $\tfrac{m}{n}\cdot V$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
pair s = (10,1);
draw(ellipse((0,0),4,1)^^ellipse((0,-6),2,.5));
fill((3,-6)--(-3,-6)--(0,-2.1)--cycle,white);
draw((4,0)--(2,-6)^^(-4,0)--(-2,-6));
draw(shift(s)*ellipse((0,0),4,1)^^shift(s)*ellipse((0,-6),2,.5));
fill(shift(s)*(3,-6)--shift(s)*(-3,-6)--shift(s)*(0,-2.1)--cycle,white);
draw(shift(s)*(4,0)--shift(s)*(2,-6)^^shift(s)*(-4,0)--shift(s)*(-2,-6));
pair s = (10,-2);
draw(shift(s)*ellipse((0,0),4,1)^^shift(s)*ellipse((0,-6),2,.5));
fill(shift(s)*(3,-6)--shift(s)*(-3,-6)--shift(s)*(0,-4.1)--cycle,white);
draw(shift(s)*(4,0)--shift(s)*(2,-6)^^shift(s)*(-4,0)--shift(s)*(-2,-6));
//darn :([/asy]
1992 AMC 12/AHSME, 30
Let $ABCD$ be an isosceles trapezoid with bases $AB = 92$ and $CD = 19$. Suppose $AD = BC = x$ and a circle with center on $\overline{AB}$ is tangent to segments $\overline{AD}$ and $\overline{BC}$. If $m$ is the smallest possible value of $x$, then $m^2 = $
$ \textbf{(A)}\ 1369\qquad\textbf{(B)}\ 1679\qquad\textbf{(C)}\ 1748\qquad\textbf{(D)}\ 2109\qquad\textbf{(E)}\ 8825 $
2024 Iranian Geometry Olympiad, 2
Points $X,Y$ lie on the side $CD$ of a convex pentagon $ABCDE$ with $X$ between $Y$ and $C$. Suppose that the triangles $\bigtriangleup XCB, \bigtriangleup ABX, \bigtriangleup AXY, \bigtriangleup AYE, \bigtriangleup YED$ are all similar (in this exact order). Prove that circumcircles of the triangles $\bigtriangleup ACD, \bigtriangleup AXY$ are tangent.
[i]Pouria Mahmoudkhan Shirazi - Iran[/i]