Found problems: 321
2019 Korea National Olympiad, 6
In acute triangle $ABC$, $AB>AC$. Let $I$ the incenter, $\Omega$ the circumcircle of triangle $ABC$, and $D$ the foot of perpendicular from $A$ to $BC$. $AI$ intersects $\Omega$ at point $M(\neq A)$, and the line which passes $M$ and perpendicular to $AM$ intersects $AD$ at point $E$. Now let $F$ the foot of perpendicular from $I$ to $AD$.
Prove that $ID\cdot AM=IE\cdot AF$.
2011 Saudi Arabia Pre-TST, 2.4
Let $ABC$ be a triangle with medians $m_a$ , $m_b$, $m_c$. Prove that:
(a) There is a triangle with side lengths $m_a$ ,$m_b$, $m_c$.
(b) This triangle is similar to $ABC$ if and only if the squares of the side lengths of triangle $ABC$ form an arithmetical sequence.
Estonia Open Junior - geometry, 2008.1.3
Let $M$ be the intersection of the medians $ABC$ of the triangle and the midpoint of the side $BC$. $A$ line parallel to side $BC$ and passing through point $M$ intersects sides $AB$ and $AC$ at points $X$ and $Y$ respectively. Let the point of intersection of the lines $XC$ and $MB$ be $Q$ and let $P$ intersection point of the lines $YB$ and $MC$ be $P$ . Prove that the triangles $DPQ$ and $ABC$ are similar.
2005 Harvard-MIT Mathematics Tournament, 6
A triangular piece of paper of area $1$ is folded along a line parallel to one of the sides and pressed flat. What is the minimum possible area of the resulting figure?
2005 AMC 12/AHSME, 15
Let $ \overline{AB}$ be a diameter of a circle and $ C$ be a point on $ \overline{AB}$ with $ 2 \cdot AC \equal{} BC$. Let $ D$ and $ E$ be points on the circle such that $ \overline{DC} \perp \overline{AB}$ and $ \overline{DE}$ is a second diameter. What is the ratio of the area of $ \triangle DCE$ to the area of $ \triangle ABD$?
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0);
pair D=dir(aCos(C.x)), E=(-D.x,-D.y);
draw(A--B--D--cycle);
draw(D--E--C);
draw(unitcircle,white);
drawline(D,C);
dot(O);
clip(unitcircle);
draw(unitcircle);
label("$E$",E,SSE);
label("$B$",B,E);
label("$A$",A,W);
label("$D$",D,NNW);
label("$C$",C,SW);
draw(rightanglemark(D,C,B,2));[/asy]$ \textbf{(A)} \ \frac {1}{6} \qquad \textbf{(B)} \ \frac {1}{4} \qquad \textbf{(C)}\ \frac {1}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {2}{3}$
I Soros Olympiad 1994-95 (Rus + Ukr), 9.2
Triangles $MA_2B_2$ and $MA_1B_1$ are similar to each other and have the same orientation. Prove that the circles circumcribed around these triangles and the straight lines $A_1A_2$ , $B_1B_2$ have a common point.
2024 Dutch IMO TST, 4
Let $ABC$ be an acute triangle with circumcenter $O$, and let $D$, $E$, and $F$ be the feet of altitudes from $A$, $B$, and $C$ to sides $BC$, $CA$, and $AB$, respectively. Denote by $P$ the intersection of the tangents to the circumcircle of $ABC$ at $B$ and $C$. The line through $P$ perpendicular to $EF$ meets $AD$ at $Q$, and let $R$ be the foot of the perpendicular from $A$ to $EF$. Prove that $DR$ and $OQ$ are parallel.
1964 AMC 12/AHSME, 29
In this figure $\angle RFS = \angle FDR$, $FD = 4$ inches, $DR = 6$ inches, $FR = 5$ inches, $FS = 7\dfrac{1}{2}$ inches. The length of $RS$, in inches, is:
[asy]
import olympiad;
pair F,R,S,D;
F=origin;
R=5*dir(aCos(9/16));
S=(7.5,0);
D=4*dir(aCos(9/16)+aCos(1/8));
label("$F$",F,SW);label("$R$",R,N); label("$S$",S,SE); label("$D$",D,W);
label("$7\frac{1}{2}$",(F+S)/2.5,SE);
label("$4$",midpoint(F--D),SW);
label("$5$",midpoint(F--R),W);
label("$6$",midpoint(D--R),N);
draw(F--D--R--F--S--R);
markscalefactor=0.1;
draw(anglemark(S,F,R)); draw(anglemark(F,D,R));
//Credit to throwaway1489 for the diagram[/asy]
$\textbf{(A)}\ \text{undetermined} \qquad
\textbf{(B)}\ 4\qquad
\textbf{(C)}\ 5\dfrac{1}{2} \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 6\dfrac{1}{4}$
1970 Czech and Slovak Olympiad III A, 2
Determine whether there is a tetrahedron $ABCD$ with the longest edge of length 1 such that all its faces are similar right triangles with right angles at vertices $B,C.$ If so, determine which edge is the longest, which is the shortest and what is its length.
2013 Online Math Open Problems, 40
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$.
[i]James Tao[/i]
2011 Balkan MO, 1
Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.
2012 Baltic Way, 14
Given a triangle $ABC$, let its incircle touch the sides $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Let $G$ be the midpoint of the segment $DE$. Prove that $\angle EFC = \angle GFD$.
2013 AMC 10, 23
In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $?
$ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $
2007 Baltic Way, 12
Let $M$ be a point on the arc $AB$ of the circumcircle of the triangle $ABC$ which does not contain $C$. Suppose that the projections of $M$ onto the lines $AB$ and $BC$ lie on the sides themselves, not on their extensions. Denote these projections by $X$ and $Y$, respectively. Let $K$ and $N$ be the midpoints of $AC$ and $XY$, respectively. Prove that $\angle MNK=90^{\circ}$ .
2023 Romania National Olympiad, 2
In the parallelogram $ABCD$, $AC \cap BD = { O }$, and $M$ is the midpoint of $AB$. Let $P \in (OC)$ and $MP \cap BC = { Q }$. We draw a line parallel to $MP$ from $O$, which intersects line $CD$ at point $N$. Show that $A,N,Q$ are collinear if and only if $P$ is the midpoint of $OC$.
2021 Dutch Mathematical Olympiad, 4
In triangle $ABC$ we have $\angle ACB = 90^o$. The point $M$ is the midpoint of $AB$. The line through $M$ parallel to $BC$ intersects $AC$ in $D$. The midpoint of line segment $CD$ is $E$. The lines $BD$ and $CM$ are perpendicular.
(a) Prove that triangles $CME$ and $ABD$ are similar.
(b) Prove that $EM$ and $AB$ are perpendicular.
[asy]
unitsize(1 cm);
pair A, B, C, D, E, M;
A = (0,0);
B = (4,0);
C = (2.6,2);
M = (A + B)/2;
D = (A + C)/2;
E = (C + D)/2;
draw(A--B--C--cycle);
draw(C--M--D--B);
dot("$A$", A, SW);
dot("$B$", B, SE);
dot("$C$", C, N);
dot("$D$", D, NW);
dot("$E$", E, NW);
dot("$M$", M, S);
[/asy]
[i]Be aware: the figure is not drawn to scale.[/i]
1999 Romania National Olympiad, 3
Let $ABCDA'B'C'D'$ be a right parallelepiped, $E$ and $F$ the projections of $A$ on the lines $A'D$, $A'C$, respectively, and $P, Q$ the projections of $B'$ on the lines $A'C'$ and $A'C$ Prove that
a) the planes $(AEF)$ and $(B'PQ)$ are parallel
b) the triangles $AEF$ and $B'PQ$ are similar.
1982 Brazil National Olympiad, 1
The angles of the triangle $ABC$ satisfy $\angle A / \angle C = \angle B / \angle A = 2$. The incenter is $O. K, L$ are the excenters of the excircles opposite $B$ and $A$ respectively. Show that triangles $ABC$ and $OKL$ are similar.
2006 Purple Comet Problems, 15
A concrete sewer pipe fitting is shaped like a cylinder with diameter $48$ with a cone on top. A cylindrical hole of diameter $30$ is bored all the way through the center of the fitting as shown. The cylindrical portion has height $60$ while the conical top portion has height $20$. Find $N$ such that the volume of the concrete is $N \pi$.
[asy]
import three;
size(250);
defaultpen(linewidth(0.7)+fontsize(10)); pen dashes = linewidth(0.7) + linetype("2 2");
currentprojection = orthographic(0,-15,5);
draw(circle((0,0,0), 15),dashes);
draw(circle((0,0,80), 15));
draw(scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw(shift((0,0,60))*scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw((-24,0,0)--(-24,0,60)--(-15,0,80)); draw((24,0,0)--(24,0,60)--(15,0,80));
draw((-15,0,0)--(-15,0,80),dashes); draw((15,0,0)--(15,0,80),dashes);
draw("48", (-24,0,-20)--(24,0,-20));
draw((-15,0,-20)--(-15,0,-17)); draw((15,0,-20)--(15,0,-17));
label("30", (0,0,-15));
draw("60", (50,0,0)--(50,0,60));
draw("20", (50,0,60)--(50,0,80));
draw((50,0,60)--(47,0,60));[/asy]
2008 Oral Moscow Geometry Olympiad, 6
Given a triangle $ABC$ and points $P$ and $Q$. It is known that the triangles formed by the projections $P$ and $Q$ on the sides of $ABC$ are similar (vertices lying on the same sides of the original triangle correspond to each other). Prove that line $PQ$ passes through the center of the circumscribed circle of triangle $ABC$.
(A. Zaslavsky)
Maryland University HSMC part II, 2023.4
Assume every side length of a triangle $ABC$ is more than $2$ and two of its angles are given by $\angle ABC = 57^\circ$ and $ACB = 63^\circ$. Point $P$ is chosen on side $BC$ with $BP:PC = 2:1$. Points $M,N$ are chosen on sides $AB$ and $AC$, respectively so that $BM = 2$ and $CN = 1$. Let $Q$ be the point on segment $MN$ for which $MQ:QN = 2:1$. Find the value of $PQ$. Your answer must be in simplest form.
2006 AIME Problems, 6
Square $ABCD$ has sides of length 1. Points $E$ and $F$ are on $\overline{BC}$ and $\overline{CD}$, respectively, so that $\triangle AEF$ is equilateral. A square with vertex $B$ has sides that are parallel to those of $ABCD$ and a vertex on $\overline{AE}$. The length of a side of this smaller square is $\displaystyle \frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b+c$.
1998 Brazil National Olympiad, 2
Let $ABC$ be a triangle. $D$ is the midpoint of $AB$, $E$ is a point on the side $BC$ such that $BE = 2 EC$ and $\angle ADC = \angle BAE$. Find $\angle BAC$.
1954 AMC 12/AHSME, 39
The locus of the midpoint of a line segment that is drawn from a given external point $ P$ to a given circle with center $ O$ and radius $ r$, is:
$ \textbf{(A)}\ \text{a straight line perpendicular to }\overline{PO} \\
\textbf{(B)}\ \text{a straight line parallel to } \overline{PO} \\
\textbf{(C)}\ \text{a circle with center }P\text{ and radius }r \\
\textbf{(D)}\ \text{a circle with center at the midpoint of }\overline{PO}\text{ and radius }2r \\
\textbf{(E)}\ \text{a circle with center at the midpoint }\overline{PO}\text{ and radius }\frac{1}{2}r$
2009 Harvard-MIT Mathematics Tournament, 7
In triangle $ABC$, $D$ is the midpoint of $BC$, $E$ is the foot of the perpendicular from $A$ to $BC$, and $F$ is the foot of the perpendicular from $D$ to $AC$. Given that $BE=5$, $EC=9$, and the area of triangle $ABC$ is $84$, compute $|EF|$.