Found problems: 196
1972 AMC 12/AHSME, 13
[asy]
draw(unitsquare);draw((0,0)--(.4,1)^^(0,.6)--(1,.2));
label("D",(0,1),NW);label("E",(.4,1),N);label("C",(1,1),NE);
label("P",(0,.6),W);label("M",(.25,.55),E);label("Q",(1,.2),E);
label("A",(0,0),SW);label("B",(1,0),SE);
//Credit to Zimbalono for the diagram[/asy]
Inside square $ABCD$ (See figure) with sides of length $12$ inches, segment $AE$ is drawn where $E$ is the point on $DC$ which is $5$ inches from $D$. The perpendicular bisector of $AE$ is drawn and intersects $AE$, $AD$, and $BC$ at points $M$, $P$, and $Q$ respectively. The ratio of segment $PM$ to $MQ$ is
$\textbf{(A) }5:12\qquad\textbf{(B) }5:13\qquad\textbf{(C) }5:19\qquad\textbf{(D) }1:4\qquad \textbf{(E) }5:21$
1983 IMO Longlists, 5
Consider the set $\mathbb Q^2$ of points in $\mathbb R^2$, both of whose coordinates are rational.
[b](a)[/b] Prove that the union of segments with vertices from $\mathbb Q^2$ is the entire set $\mathbb R^2$.
[b](b)[/b] Is the convex hull of $\mathbb Q^2$ (i.e., the smallest convex set in $\mathbb R^2$ that contains $\mathbb Q^2$) equal to $\mathbb R^2$ ?
1994 Putnam, 2
For which real numbers $c$ is there a straight line that intersects the curve
\[ y = x^4 + 9x^3 + cx^2 + 9x + 4\]
in four distinct points?
2013 Harvard-MIT Mathematics Tournament, 6
Find the number of integers $n$ such that \[1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.\]
2010 International Zhautykov Olympiad, 3
A rectangle formed by the lines of checkered paper is divided into figures of three kinds: isosceles right triangles (1) with base of two units, squares (2) with unit side, and parallelograms (3) formed by two sides and two diagonals of unit squares (figures may be oriented in any way). Prove that the number of figures of the third kind is even.
[img]http://up.iranblog.com/Files7/dda310bab8b6455f90ce.jpg[/img]
2020 Bangladesh Mathematical Olympiad National, Problem 4
$56$ lines are drawn on a plane such that no three of them are concurrent. If the lines intersect at exactly $594$ points, what is the maximum number of them that could have the same slope?
2013 Today's Calculation Of Integral, 862
Draw a tangent with positive slope to a parabola $y=x^2+1$. Find the $x$-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is $\frac{11}{3}.$
2014 NIMO Problems, 8
Triangle $ABC$ lies entirely in the first quadrant of the Cartesian plane, and its sides have slopes $63$, $73$, $97$. Suppose the curve $\mathcal V$ with equation $y=(x+3)(x^2+3)$ passes through the vertices of $ABC$. Find the sum of the slopes of the three tangents to $\mathcal V$ at each of $A$, $B$, $C$.
[i]Proposed by Akshaj[/i]
2003 AMC 10, 11
A line with slope $ 3$ intersects a line with slope $ 5$ at the point $ (10, 15)$. What is the distance between the $ x$-intercepts of these two lines?
$ \textbf{(A)}\ 2 \qquad
\textbf{(B)}\ 5 \qquad
\textbf{(C)}\ 7 \qquad
\textbf{(D)}\ 12 \qquad
\textbf{(E)}\ 20$
2008 Balkan MO Shortlist, C3
Let $ n$ be a positive integer. Consider a rectangle $ (90n\plus{}1)\times(90n\plus{}5)$ consisting of unit squares. Let $ S$ be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of $ S$ is divisible by $ 4$.
2000 Cono Sur Olympiad, 1
In square $ABCD$ (labeled clockwise), let $P$ be any point on $BC$ and construct square $APRS$ (labeled clockwise). Prove that line $CR$ is tangent to the circumcircle of triangle $ABC$.
2011 China Team Selection Test, 3
Let $m$ and $n$ be positive integers. A sequence of points $(A_0,A_1,\ldots,A_n)$ on the Cartesian plane is called [i]interesting[/i] if $A_i$ are all lattice points, the slopes of $OA_0,OA_1,\cdots,OA_n$ are strictly increasing ($O$ is the origin) and the area of triangle $OA_iA_{i+1}$ is equal to $\frac{1}{2}$ for $i=0,1,\ldots,n-1$.
Let $(B_0,B_1,\cdots,B_n)$ be a sequence of points. We may insert a point $B$ between $B_i$ and $B_{i+1}$ if $\overrightarrow{OB}=\overrightarrow{OB_i}+\overrightarrow{OB_{i+1}}$, and the resulting sequence $(B_0,B_1,\ldots,B_i,B,B_{i+1},\ldots,B_n)$ is called an [i]extension[/i] of the original sequence. Given two [i]interesting[/i] sequences $(C_0,C_1,\ldots,C_n)$ and $(D_0,D_1,\ldots,D_m)$, prove that if $C_0=D_0$ and $C_n=D_m$, then we may perform finitely many [i]extensions[/i] on each sequence until the resulting two sequences become identical.
1999 Baltic Way, 5
The point $(a,b)$ lies on the circle $x^2+y^2=1$. The tangent to the circle at this point meets the parabola $y=x^2+1$ at exactly one point. Find all such points $(a,b)$.
1998 Harvard-MIT Mathematics Tournament, 8
Find the slopes of all lines passing through the origin and tangent to the curve $y^2=x^3+39x-35$.
2009 Iran Team Selection Test, 9
In triangle $ABC$, $D$, $E$ and $F$ are the points of tangency of incircle with the center of $I$ to $BC$, $CA$ and $AB$ respectively. Let $M$ be the foot of the perpendicular from $D$ to $EF$. $P$ is on $DM$ such that $DP = MP$. If $H$ is the orthocenter of $BIC$, prove that $PH$ bisects $ EF$.
1999 AIME Problems, 2
Consider the parallelogram with vertices $(10,45),$ $(10,114),$ $(28,153),$ and $(28,84).$ A line through the origin cuts this figure into two congruent polygons. The slope of the line is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2013 IPhOO, 1
A block of mass $m$ on a frictionless inclined plane of angle $\theta$ is connected by a cord over a small frictionless, massless pulley to a second block of mass $M$ hanging vertically, as shown. If $M=1.5m$, and the acceleration of the system is $\frac{g}{3}$, where $g$ is the acceleration of gravity, what is $\theta$, in degrees, rounded to the nearest integer?
[asy]size(12cm);
pen p=linewidth(1), dark_grey=gray(0.25), ll_grey=gray(0.90), light_grey=gray(0.75);
pair B = (-1,-1);
pair C = (-1,-7);
pair A = (-13,-7);
path inclined_plane = A--B--C--cycle;
draw(inclined_plane, p);
real r = 1; // for marking angles
draw(arc(A, r, 0, degrees(B-A))); // mark angle
label("$\theta$", A + r/1.337*(dir(C-A)+dir(B-A)), (0,0), fontsize(16pt)); // label angle as theta
draw((C+(-r/2,0))--(C+(-r/2,r/2))--(C+(0,r/2))); // draw right angle
real h = 1.2; // height of box
real w = 1.9; // width of box
path box = (0,0)--(0,h)--(w,h)--(w,0)--cycle; // the box
// box on slope with label
picture box_on_slope;
filldraw(box_on_slope, box, light_grey, black);
label(box_on_slope, "$m$", (w/2,h/2));
pair V = A + rotate(90) * (h/2 * dir(B-A)); // point with distance l/2 from AB
pair T1 = dir(125); // point of tangency with pulley
pair X1 = intersectionpoint(T1--(T1 - rotate(-90)*(2013*dir(T1))), V--(V+B-A)); // construct midpoint of right side of box
draw(T1--X1); // string
add(shift(X1-(w,h/2))*rotate(degrees(B-A), (w,h/2)) * box_on_slope);
// picture for the hanging box
picture hanging_box;
filldraw(hanging_box, box, light_grey, black);
label(hanging_box, "$M$", (w/2,h/2));
pair T2 = (1,0);
pair X2 = (1,-3);
draw(T2--X2); // string
add(shift(X2-(w/2,h)) * hanging_box);
// Draws the actual pulley
filldraw(unitcircle, grey, p); // outer boundary of pulley wheel
filldraw(scale(0.4)*unitcircle, light_grey, p); // inner boundary of pulley wheel
path pulley_body=arc((0,0),0.3,-40,130)--arc((-1,-1),0.5,130,320)--cycle; // defines "arm" of pulley
filldraw(pulley_body, ll_grey, dark_grey+p); // draws the arm
filldraw(scale(0.18)*unitcircle, ll_grey, dark_grey+p); // inner circle of pulley[/asy][i](Proposed by Ahaan Rungta)[/i]
2007 Putnam, 1
Find all values of $ \alpha$ for which the curves $ y\equal{}\alpha x^2\plus{}\alpha x\plus{}\frac1{24}$ and $ x\equal{}\alpha y^2\plus{}\alpha y\plus{}\frac1{24}$ are tangent to each other.
1976 AMC 12/AHSME, 19
A polynomial $p(x)$ has remainder three when divided by $x-1$ and remainder five when divided by $x-3$. The remainder when $p(x)$ is divided by $(x-1)(x-3)$ is
$\textbf{(A) }x-2\qquad\textbf{(B) }x+2\qquad\textbf{(C) }2\qquad\textbf{(D) }8\qquad \textbf{(E) }15$
2007 National Olympiad First Round, 29
Let $M$ and $N$ be points on the sides $BC$ and $CD$, respectively, of a square $ABCD$. If $|BM|=21$, $|DN|=4$, and $|NC|=24$, what is $m(\widehat{MAN})$?
$
\textbf{(A)}\ 15^\circ
\qquad\textbf{(B)}\ 30^\circ
\qquad\textbf{(C)}\ 37^\circ
\qquad\textbf{(D)}\ 45^\circ
\qquad\textbf{(E)}\ 60^\circ
$
2008 Moldova MO 11-12, 3
In the usual coordinate system $ xOy$ a line $ d$ intersect the circles $ C_1:$ $ (x\plus{}1)^2\plus{}y^2\equal{}1$ and $ C_2:$ $ (x\minus{}2)^2\plus{}y^2\equal{}4$ in the points $ A,B,C$ and $ D$ (in this order). It is known that $ A\left(\minus{}\frac32,\frac{\sqrt3}2\right)$ and $ \angle{BOC}\equal{}60^{\circ}$. All the $ Oy$ coordinates of these $ 4$ points are positive. Find the slope of $ d$.
2010 China Girls Math Olympiad, 5
Let $f(x)$ and $g(x)$ be strictly increasing linear functions from $\mathbb R $ to $\mathbb R $ such that $f(x)$ is an integer if and only if $g(x)$ is an integer. Prove that for any real number $x$, $f(x)-g(x)$ is an integer.
2011 Canadian Open Math Challenge, 9
ABC is a triangle with coordinates A =(2, 6), B =(0, 0), and C =(14, 0).
(a) Let P be the midpoint of AB. Determine the equation of the line perpendicular to AB passing through P.
(b) Let Q be the point on line BC for which PQ is perpendicular to AB. Determine the length of AQ.
(c) There is a (unique) circle passing through the points A, B, and C. Determine the radius of this circle.
2014 AMC 12/AHSME, 17
Let $P$ be the parabola with equation $y = x^2$ and let $Q = (20, 14)$ There are real numbers $r$ and $s$ such that the line through $Q$ with slope $m$ does not intersect $P$ if and only if $r < m < s$. What is $r + s?$
$ \textbf{(A)} 1 \qquad \textbf{(B)} 26 \qquad \textbf{(C)} 40 \qquad \textbf{(D)} 52 \qquad \textbf{(E)} 80 \qquad $
2013 Princeton University Math Competition, 3
The area of a circle centered at the origin, which is inscribed in the parabola $y=x^2-25$, can be expressed as $\tfrac ab\pi$, where $a$ and $b$ are coprime positive integers. What is the value of $a+b$?