This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 196

2010 Putnam, A2

Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f'(x)=\frac{f(x+n)-f(x)}n\] for all real numbers $x$ and all positive integers $n.$

1997 AIME Problems, 7

A car travels due east at $\frac 23$ mile per minute on a long, straight road. At the same time, a circular storm, whose radius is 51 miles, moves southeast at $\frac 12\sqrt{2}$ mile per minute. At time $t=0,$ the center of the storm is 110 miles due north of the car. At time $t=t_1$ minutes, the car enters the storm circle, and at time $t=t_2$ minutes, the car leaves the storm circle. Find $\frac 12(t_1+t_2).$

2008 Balkan MO, 3

Let $ n$ be a positive integer. Consider a rectangle $ (90n\plus{}1)\times(90n\plus{}5)$ consisting of unit squares. Let $ S$ be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of $ S$ is divisible by $ 4$.

2010 National Olympiad First Round, 11

At most how many points with integer coordinates are there over a circle with center of $(\sqrt{20}, \sqrt{10})$ in the $xy$-plane? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None} $

1986 AMC 12/AHSME, 2

If the line $L$ in the $xy$-plane has half the slope and twice the y-intercept of the line $y = \frac{2}{3} x + 4$, then an equation for $L$ is: $ \textbf{(A)}\ y = \frac{1}{3} x + 8 \qquad \textbf{(B)}\ y = \frac{4}{3} x + 2 \qquad \textbf{(C)}\ y = \frac{1}{3} x + 4 \qquad\\ \textbf{(D)}\ y = \frac{4}{3} x + 4 \qquad \textbf{(E)}\ y = \frac{1}{3} x + 2 $

1950 AMC 12/AHSME, 14

For the simultaneous equations \[ 2x\minus{}3y\equal{}8\] \[ 6y\minus{}4x\equal{}9\] $\textbf{(A)}\ x=4,y=0 \qquad \textbf{(B)}\ x=0,y=\dfrac{3}{2}\qquad \textbf{(C)}\ x=0,y=0 \qquad\\ \textbf{(D)}\ \text{There is no solution} \qquad \textbf{(E)}\ \text{There are an infinite number of solutions}$

1960 AMC 12/AHSME, 13

The polygon(s) formed by $y=3x+2$, $y=-3x+2$, and $y=-2$, is (are): $ \textbf{(A) }\text{An equilateral triangle}\qquad\textbf{(B) }\text{an isosceles triangle} \qquad\textbf{(C) }\text{a right triangle} \qquad$ $\textbf{(D) }\text{a triangle and a trapezoid}\qquad\textbf{(E) }\text{a quadrilateral} $

1988 AIME Problems, 14

Let $C$ be the graph of $xy = 1$, and denote by $C^*$ the reflection of $C$ in the line $y = 2x$. Let the equation of $C^*$ be written in the form \[ 12x^2 + bxy + cy^2 + d = 0. \] Find the product $bc$.

2014 Putnam, 6

Let $f:[0,1]\to\mathbb{R}$ be a function for which there exists a constant $K>0$ such that $|f(x)-f(y)|\le K|x-y|$ for all $x,y\in [0,1].$ Suppose also that for each rational number $r\in [0,1],$ there exist integers $a$ and $b$ such that $f(r)=a+br.$ Prove that there exist finitely many intervals $I_1,\dots,I_n$ such that $f$ is a linear function on each $I_i$ and $[0,1]=\bigcup_{i=1}^nI_i.$

2014 AMC 10, 16

In rectangle $ABCD$, $AB=1$, $BC=2$, and points $E$, $F$, and $G$ are midpoints of $\overline{BC}$, $\overline{CD}$, and $\overline{AD}$, respectively. Point $H$ is the midpoint of $\overline{GE}$. What is the area of the shaded region? [asy] import graph; size(9cm); pen dps = fontsize(10); defaultpen(dps); pair D = (0,0); pair F = (1/2,0); pair C = (1,0); pair G = (0,1); pair E = (1,1); pair A = (0,2); pair B = (1,2); pair H = (1/2,1); // do not look pair X = (1/3,2/3); pair Y = (2/3,2/3); draw(A--B--C--D--cycle); draw(G--E); draw(A--F--B); draw(D--H--C); filldraw(H--X--F--Y--cycle,grey); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,E); label("$F$",F,S); label("$G$",G,W); label("$H$",H,N); label("$\displaystyle\frac12$",(0.25,0),S); label("$\displaystyle\frac12$",(0.75,0),S); label("$1$",(1,0.5),E); label("$1$",(1,1.5),E); [/asy] $ \textbf{(A)}\ \dfrac1{12}\qquad\textbf{(B)}\ \dfrac{\sqrt3}{18}\qquad\textbf{(C)}\ \dfrac{\sqrt2}{12}\qquad\textbf{(D)}\ \dfrac{\sqrt3}{12}\qquad\textbf{(E)}\ \dfrac16 $

1958 AMC 12/AHSME, 27

The points $ (2,\minus{}3)$, $ (4,3)$, and $ (5, k/2)$ are on the same straight line. The value(s) of $ k$ is (are): $ \textbf{(A)}\ 12\qquad \textbf{(B)}\ \minus{}12\qquad \textbf{(C)}\ \pm 12\qquad \textbf{(D)}\ {12}\text{ or }{6}\qquad \textbf{(E)}\ {6}\text{ or }{6\frac{2}{3}}$

1954 AMC 12/AHSME, 45

In a rhombus, $ ABCD$, line segments are drawn within the rhombus, parallel to diagonal $ BD$, and terminated in the sides of the rhombus. A graph is drawn showing the length of a segment as a function of its distance from vertex $ A$. The graph is: $ \textbf{(A)}\ \text{A straight line passing through the origin.} \\ \textbf{(B)}\ \text{A straight line cutting across the upper right quadrant.} \\ \textbf{(C)}\ \text{Two line segments forming an upright V.} \\ \textbf{(D)}\ \text{Two line segments forming an inverted V.} \\ \textbf{(E)}\ \text{None of these.}$

1988 AMC 12/AHSME, 29

You plot weight $(y)$ against height $(x)$ for three of your friends and obtain the points $(x_{1},y_{1})$, $(x_{2},y_{2})$, $(x_{3},y_{3})$. If \[x_{1} < x_{2} < x_{3}\quad\text{ and }\quad x_{3} - x_{2} = x_{2} - x_{1},\] which of the following is necessarily the slope of the line which best fits the data? "Best fits" means that the sum of the squares of the vertical distances from the data points to the line is smaller than for any other line. $ \textbf{(A)}\ \frac{y_{3} - y_{1}}{x_{3} - x_{1}}\qquad\textbf{(B)}\ \frac{(y_{2} - y_{1}) - (y_{3} - y_{2})}{x_{3} - x_{1}}\qquad\textbf{(C)}\ \frac{2y_{3} - y_{1} - y_{2}}{2x_{3} - x_{1} - x_{2}}\qquad\textbf{(D)}\ \frac{y_{2} - y_{1}}{x_{2} - x_{1}} + \frac{y_{3} - y_{2}}{x_{3} - x_{2}}\qquad\textbf{(E)}\ \text{none of these} $

2014 Turkey Team Selection Test, 1

Find the number of $(a_1,a_2, ... ,a_{2014})$ permutations of the $(1,2, . . . ,2014)$ such that, for all $1\leq i<j\leq2014$, $i+a_i \leq j+a_j$.

1986 AMC 12/AHSME, 26

It is desired to construct a right triangle in the coordinate plane so that its legs are parallel to the $x$ and $y$ axes and so that the medians to the midpoints of the legs lie on the lines $y = 3x + 1$ and $y = mx + 2$. The number of different constants $m$ for which such a triangle exists is $ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ \text{more than 3} $

2008 Princeton University Math Competition, A7/B9

Let $\mathcal{H}$ be the region of points $(x, y)$, such that $(1, 0), (x, y), (-x, y)$, and $(-1,0)$ form an isosceles trapezoid whose legs are shorter than the base between $(x, y)$ and $(-x,y)$. Find the least possible positive slope that a line could have without intersecting $\mathcal{H}$.

2013 AMC 12/AHSME, 8

Line $\ell_1$ has equation $3x-2y=1$ and goes through $A=(-1,-2)$. Line $\ell_2$ has equation $y=1$ and meets line $\ell_1$ at point $B$. Line $\ell_3$ has positive slope, goes through point $A$, and meets $\ell_2$ at point $C$. The area of $\triangle ABC$ is $3$. What is the slope of $\ell_3$? $ \textbf{(A)}\ \frac{2}{3}\qquad\textbf{(B)}\ \frac{3}{4}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \frac{4}{3}\qquad\textbf{(E)}\ \frac{3}{2} $

2014 Contests, 1

Find the number of $(a_1,a_2, ... ,a_{2014})$ permutations of the $(1,2, . . . ,2014)$ such that, for all $1\leq i<j\leq2014$, $i+a_i \leq j+a_j$.

1969 AMC 12/AHSME, 32

Let a sequence $\{u_n\}$ be defined by $u_1=5$ and the relation $u_{n+1}-u_n=3+4(n-1)$, $n=1,2,3,\cdots$. If $u_n$ is expressed as a polynomial in $n$, the algebraic sum of its coefficients is: $\textbf{(A) }3\qquad \textbf{(B) }4\qquad \textbf{(C) }5\qquad \textbf{(D) }6\qquad \textbf{(E) }11$

2011 Today's Calculation Of Integral, 758

Find the slope of a line passing through the point $(0,\ 1)$ with which the area of the part bounded by the line and the parabola $y=x^2$ is $\frac{5\sqrt{5}}{6}.$

2005 AMC 12/AHSME, 24

All three vertices of an equilateral triangle are on the parabola $ y \equal{} x^2$, and one of its sides has a slope of 2. The x-coordinates of the three vertices have a sum of $ m/n$, where $ m$ and $ n$ are relatively prime positive integers. What is the value of $ m \plus{} n$? $ \textbf{(A)}\ 14\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 17\qquad \textbf{(E)}\ 18$

2012 AIME Problems, 11

A frog begins at $P_0 = (0,0)$ and makes a sequence of jumps according to the following rule: from $P_n=(x_n,y_n)$, the frog jumps to $P_{n+1}$, which may be any of the points $(x_n+7, y_n+2)$, $(x_n+2,y_n+7)$, $(x_n-5, y_n-10)$, or $(x_n-10,y_n-5)$. There are $M$ points $(x,y)$ with $|x|+|y| \le 100$ that can be reached by a sequence of such jumps. Find the remainder when $M$ is divided by $1000$.

2003 AMC 12-AHSME, 24

Positive integers $ a$, $ b$, and $ c$ are chosen so that $ a<b<c$, and the system of equations \[ 2x\plus{}y\equal{}2003\text{ and }y\equal{}|x\minus{}a|\plus{}|x\minus{}b|\plus{}|x\minus{}c| \]has exactly one solution. What is the minimum value of $ c$? $ \textbf{(A)}\ 668 \qquad \textbf{(B)}\ 669 \qquad \textbf{(C)}\ 1002 \qquad \textbf{(D)}\ 2003 \qquad \textbf{(E)}\ 2004$

2008 Harvard-MIT Mathematics Tournament, 31

Let $ \mathcal{C}$ be the hyperbola $ y^2 \minus{} x^2 \equal{} 1$. Given a point $ P_0$ on the $ x$-axis, we construct a sequence of points $ (P_n)$ on the $ x$-axis in the following manner: let $ \ell_n$ be the line with slope $ 1$ passing passing through $ P_n$, then $ P_{n\plus{}1}$ is the orthogonal projection of the point of intersection of $ \ell_n$ and $ \mathcal C$ onto the $ x$-axis. (If $ P_n \equal{} 0$, then the sequence simply terminates.) Let $ N$ be the number of starting positions $ P_0$ on the $ x$-axis such that $ P_0 \equal{} P_{2008}$. Determine the remainder of $ N$ when divided by $ 2008$.