This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1980 IMO, 3

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

1991 Arnold's Trivium, 100

Find the mathematical expectation of the area of the projection of a cube with edge of length $1$ onto a plane with an isotropically distributed random direction of projection.

2001 IMC, 3

Find the maximum number of points on a sphere of radius $1$ in $\mathbb{R}^n$ such that the distance between any two of these points is strictly greater than $\sqrt{2}$.

1964 Putnam, B4

Into how many regions do $n$ great circles, no three of which meet at a point, divide a sphere?

1987 Vietnam National Olympiad, 3

Prove that among any five distinct rays $ Ox$, $ Oy$, $ Oz$, $ Ot$, $ Or$ in space there exist two which form an angle less than or equal to $ 90^{\circ}$.

1984 IMO Longlists, 65

A tetrahedron is inscribed in a sphere of radius $1$ such that the center of the sphere is inside the tetrahedron. Prove that the sum of lengths of all edges of the tetrahedron is greater than 6.

1959 Poland - Second Round, 6

From a point $ M $ on the surface of a sphere, three mutually perpendicular chords $ MA $, $ MB $, $ MC $ are drawn. Prove that the segment joining the point $ M $ with the center of the sphere intersects the plane of the triangle $ ABC $ at the center of gravity of this triangle.

1995 Iran MO (2nd round), 1

Prove that for every positive integer $n \geq 3$ there exist two sets $A =\{ x_1, x_2,\ldots, x_n\}$ and $B =\{ y_1, y_2,\ldots, y_n\}$ for which [b]i)[/b] $A \cap B = \varnothing.$ [b]ii)[/b] $x_1+ x_2+\cdots+ x_n= y_1+ y_2+\cdots+ y_n.$ [b]ii)[/b] $x_1^2+ x_2^2+\cdots+ x_n^2= y_1^2+ y_2^2+\cdots+ y_n^2.$

2020 AIME Problems, 6

Tags: geometry , sphere
A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is 7. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\frac{m}n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2013 Sharygin Geometry Olympiad, 7

Given five fixed points in the space. It is known that these points are centers of five spheres, four of which are pairwise externally tangent, and all these point are internally tangent to the fifth one. It turns out that it is impossible to determine which of the marked points is the center of the largest sphere. Find the ratio of the greatest and the smallest radii of the spheres.

2003 AIME Problems, 5

Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is $(m + n \pi)/p$, where $m$, $n$, and $p$ are positive integers, and $n$ and $p$ are relatively prime, find $m + n + p$.

1991 Arnold's Trivium, 70

Calculate the mean value of the solid angle by which the disc $x^2 + y^2 \le 1$ lying in the plane $z = 0$ is seen from points of the sphere $x^2 + y^2 + (z-2)^2 = 1$.

2013 AMC 12/AHSME, 18

Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere? $ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$

2007 Iran MO (3rd Round), 7

A ring is the area between two circles with the same center, and width of a ring is the difference between the radii of two circles. [img]http://i18.tinypic.com/6cdmvi8.png[/img] a) Can we put uncountable disjoint rings of width 1(not necessarily same) in the space such that each two of them can not be separated. [img]http://i19.tinypic.com/4qgx30j.png[/img] b) What's the answer if 1 is replaced with 0?

1996 Austrian-Polish Competition, 5

A sphere $S$ divides every edge of a convex polyhedron $P$ into three equal parts. Show that there exists a sphere tangent to all the edges of $P$.

2009 Tournament Of Towns, 3

Every edge of a tetrahedron is tangent to a given sphere. Prove that the three line segments joining the points of tangency of the three pairs of opposite edges of the tetrahedron are concurrent. [i](7 points)[/i]

1969 IMO Shortlist, 32

$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.

1997 All-Russian Olympiad, 3

A sphere inscribed in a tetrahedron touches one face at the intersection of its angle bisectors, a second face at the intersection of its altitudes, and a third face at the intersection of its medians. Show that the tetrahedron is regular. [i]N. Agakhanov[/i]

2005 USAMTS Problems, 5

Sphere $S$ is inscribed in cone $C$. The height of $C$ equals its radius, and both equal $12+12\sqrt2$. Let the vertex of the cone be $A$ and the center of the sphere be $B$. Plane $P$ is tangent to $S$ and intersects $\overline{AB}$. $X$ is the point on the intersection of $P$ and $C$ closest to $A$. Given that $AX=6$, find the area of the region of $P$ enclosed by the intersection of $C$ and $P$.

1976 Poland - Second Round, 3

We consider a spherical bowl without any great circle. The distance between points $A$ and $B$ on such a bowl is defined as the length of the arc of the great circle of the sphere with ends at points $A$ and $B$, which is contained in the bowl. Prove that there is no isometry mapping this bowl to a subset of the plane. Attention. A spherical bowl is each of the two parts into which the surface of the sphere is divided by a plane intersecting the sphere.

2013 Tuymaada Olympiad, 7

Points $A_1$, $A_2$, $A_3$, $A_4$ are the vertices of a regular tetrahedron of edge length $1$. The points $B_1$ and $B_2$ lie inside the figure bounded by the plane $A_1A_2A_3$ and the spheres of radius $1$ and centres $A_1$, $A_2$, $A_3$. Prove that $B_1B_2 < \max\{B_1A_1, B_1A_2, B_1A_3, B_1A_4\}$. [i] A. Kupavsky [/i]

2013 F = Ma, 12

A spherical shell of mass $M$ and radius $R$ is completely filled with a frictionless fluid, also of mass M. It is released from rest, and then it rolls without slipping down an incline that makes an angle $\theta$ with the horizontal. What will be the acceleration of the shell down the incline just after it is released? Assume the acceleration of free fall is $g$. The moment of inertia of a thin shell of radius $r$ and mass $m$ about the center of mass is $I = \frac{2}{3}mr^2$; the momentof inertia of a solid sphere of radius r and mass m about the center of mass is $I = \frac{2}{5}mr^2$. $\textbf{(A) } g \sin \theta \\ \textbf{(B) } \frac{3}{4} g \sin \theta\\ \textbf{(C) } \frac{1}{2} g \sin \theta\\ \textbf{(D) } \frac{3}{8} g \sin \theta\\ \textbf{(E) } \frac{3}{5} g \sin \theta$

VI Soros Olympiad 1999 - 2000 (Russia), 11.4

Let the line $L$ be perpendicular to the plane $P$. Three spheres touch each other in pairs so that each sphere touches the plane $P$ and the line $L$. The radius of the larger sphere is $1$. Find the minimum radius of the smallest sphere.