This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

2012 Today's Calculation Of Integral, 780

Let $n\geq 3$ be integer. Given a regular $n$-polygon $P$ with side length 4 on the plane $z=0$ in the $xyz$-space.Llet $G$ be a circumcenter of $P$. When the center of the sphere $B$ with radius 1 travels round along the sides of $P$, denote by $K_n$ the solid swept by $B$. Answer the following questions. (1) Take two adjacent vertices $P_1,\ P_2$ of $P$. Let $Q$ be the intersection point between the perpendicular dawn from $G$ to $P_1P_2$, prove that $GQ>1$. (2) (i) Express the area of cross section $S(t)$ in terms of $t,\ n$ when $K_n$ is cut by the plane $z=t\ (-1\leq t\leq 1)$. (ii) Express the volume $V(n)$ of $K_n$ in terms of $n$. (3) Denote by $l$ the line which passes through $G$ and perpendicular to the plane $z=0$. Express the volume $W(n)$ of the solid by generated by a rotation of $K_n$ around $l$ in terms of $n$. (4) Find $\lim_{n\to\infty} \frac{V(n)}{W(n)} .$

2015 Sharygin Geometry Olympiad, P24

The insphere of a tetrahedron ABCD with center $O$ touches its faces at points $A_1,B_1,C_1$ and $D_1$. a) Let $P_a$ be a point such that its reflections in lines $OB,OC$ and $OD$ lie on plane $BCD$. Points $P_b, P_c$ and $P_d$ are defined similarly. Prove that lines $A_1P_a,B_1P_b,C_1P_c$ and $D_1P_d$ concur at some point $ P$. b) Let $I$ be the incenter of $A_1B_1C_1D_1$ and $A_2$ the common point of line $A_1I $ with plane $B_1C_1D_1$. Points $B_2, C_2, D_2$ are defined similarly. Prove that $P$ lies inside $A_2B_2C_2D_2$.

1969 IMO Shortlist, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

1951 Putnam, B7

Find the volume of the four-dimensional hypersphere $x^2 +y^2 +z^2 +t^2 =r^2$ and the hypervolume of its interior $x^2 +y^2 +z^2 +t^2 <r^2$

1989 Austrian-Polish Competition, 5

Let $A$ be a vertex of a cube $\omega$ circumscribed about a sphere $k$ of radius $1$. We consider lines $g$ through $A$ containing at least one point of $k$. Let $P$ be the intersection point of $g$ and $k$ closer to $A$, and $Q$ be the second intersection point of $g$ and $\omega$. Determine the maximum value of $AP\cdot AQ$ and characterize the lines $g$ yielding the maximum.

1996 Vietnam National Olympiad, 2

Given a trihedral angle Sxyz. A plane (P) not through S cuts Sx,Sy,Sz respectively at A,B,C. On the plane (P), outside triangle ABC, construct triangles DAB,EBC,FCA which are confruent to the triangles SAB,SBC,SCA respectively. Let (T) be the sphere lying inside Sxyz, but not inside the tetrahedron SABC, toucheing the planes containing the faces of SABC. Prove that (T) touches the plane (P) at the circumcenter of triangle DEF.

2005 AMC 12/AHSME, 16

Eight spheres of radius 1, one per octant, are each tangent to the coordinate planes. What is the radius of the smallest sphere, centered at the origin, that contains these eight spheres? $ \textbf{(A)}\ \sqrt 2\qquad \textbf{(B)}\ \sqrt 3\qquad \textbf{(C)}\ 1 \plus{} \sqrt 2\qquad \textbf{(D)}\ 1 \plus{} \sqrt 3\qquad \textbf{(E)}\ 3$

1967 IMO Longlists, 32

Determine the volume of the body obtained by cutting the ball of radius $R$ by the trihedron with vertex in the center of that ball, it its dihedral angles are $\alpha, \beta, \gamma.$

1958 February Putnam, B4

Title is self explanatory. Pick two points on the unit sphere. What is the expected distance between them?

2006 China Second Round Olympiad, 10

Suppose four solid iron balls are placed in a cylinder with the radius of 1 cm, such that every two of the four balls are tangent to each other, and the two balls in the lower layer are tangent to the cylinder base. Now put water into the cylinder. Find, in $\text{cm}^2$, the volume of water needed to submerge all the balls.

2021 Alibaba Global Math Competition, 5

Suppose that $A$ is a finite subset of $\mathbb{R}^d$ such that (a) every three distinct points in $A$ contain two points that are exactly at unit distance apart, and (b) the Euclidean norm of every point $v$ in $A$ satisfies \[\sqrt{\frac{1}{2}-\frac{1}{2\vert A\vert}} \le \|v\| \le \sqrt{\frac{1}{2}+\frac{1}{2\vert A\vert}}.\] Prove that the cardinality of $A$ is at most $2d+4$.

1985 Bundeswettbewerb Mathematik, 4

Each point of the 3-dimensional space is coloured with exactly one of the colours red, green and blue. Let $R$, $G$ and $B$, respectively, be the sets of the lengths of those segments in space whose both endpoints have the same colour (which means that both are red, both are green and both are blue, respectively). Prove that at least one of these three sets includes all non-negative reals.

Kvant 2019, M2580

We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic. [i] Tibor Bakos and Géza Kós [/i]

2011 National Olympiad First Round, 33

What is the largest volume of a sphere which touches to a unit sphere internally and touches externally to a regular tetrahedron whose corners are over the unit sphere? $\textbf{(A)}\ \frac13 \qquad\textbf{(B)}\ \frac14 \qquad\textbf{(C)}\ \frac12\left ( 1 - \frac1{\sqrt3} \right ) \qquad\textbf{(D)}\ \frac12\left ( \frac{2\sqrt2}{\sqrt3} - 1 \right ) \qquad\textbf{(E)}\ \text{None}$

2011 Pre-Preparation Course Examination, 1

[b]a)[/b] prove that for every compressed set $K$ in the space $\mathbb R^3$, the function $f:\mathbb R^3 \longrightarrow \mathbb R$ that $f(p)=inf\{|p-k|,k\in K\}$ is continuous. [b]b)[/b] prove that we cannot cover the sphere $S^2\subseteq \mathbb R^3$ with it's three closed sets, such that none of them contain two antipodal points.

III Soros Olympiad 1996 - 97 (Russia), 11.10

In a dihedral angle of measure $c$ two non-intersecting spheres are inscribed, the centers of which are located on a straight line perpendicular to the edge of the dihedral angle. The points of contact of these spheres with the edges of the corner are at distances $a$ and $b$ from the edge. Let us consider an arbitrary plane tangent to these spheres and intersecting the segment connecting their centers. Let us denote by $\phi$ the measure of the angle formed at the intersection of this plane with the faces of a given dihedral angle. Find the greatest value $\phi$.

2022 JHMT HS, 2

Four mutually externally tangent spherical apples of radius $4$ are placed on a horizontal flat table. Then, a spherical orange of radius $3$ is placed such that it rests on all the apples. Find the distance from the center of the orange to the table.

1994 Chile National Olympiad, 4

Consider a box of dimensions $10$ cm $\times 16$ cm $\times 1$ cm. Determine the maximum number of balls of diameter $ 1$ cm that the box can contain.

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

1980 IMO Shortlist, 15

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

V Soros Olympiad 1998 - 99 (Russia), 11.10

The plane angles at vertex $D$ of the pyramid $ABCD$ are equal to $\alpha$,$\beta$ and $\gamma$ ($\angle CDB = a$). An arbitrary point $M$ is taken on edge $CB$. A ball is inscribed in each of the pyramids $ABDM$ and $ACDM$. Let us draw through $D$ a plane distinct from $BCD$, tangent to both balls and not intersecting the segment connecting the centers of the balls. Let this plane intersect the segment $AM$ at point $P$. What is $\angle ADP$ equal to?

1994 Bundeswettbewerb Mathematik, 3

Let $A$ and $B$ be two spheres of different radii, both inscribed in a cone $K$. There are $m$ other, congruent spheres arranged in a ring such that each of them touches $A, B, K$ and two of the other spheres. Prove that this is possible for at most three values of $m.$

2013 Tournament of Towns, 5

A spacecraft landed on an asteroid. It is known that the asteroid is either a ball or a cube. The rover started its route at the landing site and finished it at the point symmetric to the landing site with respect to the center of the asteroid. On its way, the rover transmitted its spatial coordinates to the spacecraft on the landing site so that the trajectory of the rover movement was known. Can it happen that this information is not suffcient to determine whether the asteroid is a ball or a cube?

1983 IMO Longlists, 40

Four faces of tetrahedron $ABCD$ are congruent triangles whose angles form an arithmetic progression. If the lengths of the sides of the triangles are $a < b < c$, determine the radius of the sphere circumscribed about the tetrahedron as a function on $a, b$, and $c$. What is the ratio $c/a$ if $R = a \ ?$

1966 IMO Shortlist, 6

Let $m$ be a convex polygon in a plane, $l$ its perimeter and $S$ its area. Let $M\left( R\right) $ be the locus of all points in the space whose distance to $m$ is $\leq R,$ and $V\left(R\right) $ is the volume of the solid $M\left( R\right) .$ [i]a.)[/i] Prove that \[V (R) = \frac 43 \pi R^3 +\frac{\pi}{2} lR^2 +2SR.\] Hereby, we say that the distance of a point $C$ to a figure $m$ is $\leq R$ if there exists a point $D$ of the figure $m$ such that the distance $CD$ is $\leq R.$ (This point $D$ may lie on the boundary of the figure $m$ and inside the figure.) additional question: [i]b.)[/i] Find the area of the planar $R$-neighborhood of a convex or non-convex polygon $m.$ [i]c.)[/i] Find the volume of the $R$-neighborhood of a convex polyhedron, e. g. of a cube or of a tetrahedron. [b]Note by Darij:[/b] I guess that the ''$R$-neighborhood'' of a figure is defined as the locus of all points whose distance to the figure is $\leq R.$