This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

2005 Iran MO (2nd round), 3

In one galaxy, there exist more than one million stars. Let $M$ be the set of the distances between any $2$ of them. Prove that, in every moment, $M$ has at least $79$ members. (Suppose each star as a point.)

2008 Putnam, B3

What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?

2013 Tournament of Towns, 5

A spacecraft landed on an asteroid. It is known that the asteroid is either a ball or a cube. The rover started its route at the landing site and finished it at the point symmetric to the landing site with respect to the center of the asteroid. On its way, the rover transmitted its spatial coordinates to the spacecraft on the landing site so that the trajectory of the rover movement was known. Can it happen that this information is not suffcient to determine whether the asteroid is a ball or a cube?

2008 Princeton University Math Competition, A10

A cuboctahedron is the convex hull of (smallest convex set containing) the $12$ points $(\pm 1, \pm 1, 0), (\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$. Find the cosine of the solid angle of one of the triangular faces, as viewed from the origin. (Take a figure and consider the set of points on the unit sphere centered on the origin such that the ray from the origin through the point intersects the fi gure. The area of that set is the solid angle of the fi gure as viewed from the origin.)

1976 IMO Longlists, 22

A regular pentagon $A_1A_2A_3A_4A_5$ with side length $s$ is given. At each point $A_i$, a sphere $K_i$ of radius $\frac{s}{2}$ is constructed. There are two spheres $K_1$ and $K_2$ each of radius $\frac{s}{2}$ touching all the five spheres $K_i.$ Decide whether $K_1$ and $K_2$ intersect each other, touch each other, or have no common points.

2003 Tournament Of Towns, 1

A triangular pyramid $ABCD$ is given. Prove that $\frac Rr > \frac ah$, where $R$ is the radius of the circumscribed sphere, $r$ is the radius of the inscribed sphere, $a$ is the length of the longest edge, $h$ is the length of the shortest altitude (from a vertex to the opposite face).

1997 All-Russian Olympiad, 3

A sphere inscribed in a tetrahedron touches one face at the intersection of its angle bisectors, a second face at the intersection of its altitudes, and a third face at the intersection of its medians. Show that the tetrahedron is regular. [i]N. Agakhanov[/i]

2003 AMC 10, 17

An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies $ 75\%$ of the volume of the frozen ice cream. What is the ratio of the cone’s height to its radius? $ \textbf{(A)}\ 2: 1 \qquad \textbf{(B)}\ 3: 1 \qquad \textbf{(C)}\ 4: 1 \qquad \textbf{(D)}\ 16: 3 \qquad \textbf{(E)}\ 6: 1$

2005 AMC 12/AHSME, 16

Eight spheres of radius 1, one per octant, are each tangent to the coordinate planes. What is the radius of the smallest sphere, centered at the origin, that contains these eight spheres? $ \textbf{(A)}\ \sqrt 2\qquad \textbf{(B)}\ \sqrt 3\qquad \textbf{(C)}\ 1 \plus{} \sqrt 2\qquad \textbf{(D)}\ 1 \plus{} \sqrt 3\qquad \textbf{(E)}\ 3$

1989 All Soviet Union Mathematical Olympiad, 505

$S$ and $S'$ are two intersecting spheres. The line $BXB'$ is parallel to the line of centers, where $B$ is a point on $S, B'$ is a point on $S'$ and $X$ lies on both spheres. $A$ is another point on $S$, and $A'$ is another point on S' such that the line $AA'$ has a point on both spheres. Show that the segments $AB$ and $A'B'$ have equal projections on the line $AA'$.

2006 Polish MO Finals, 2

Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.

MIPT student olimpiad spring 2023, 3

Prove that if a set $X\subset S^n$ takes up more than half a Riemannian volume of a unit sphere $S^n$, then the set of all possible geodesic segments length less than $\pi$ with endpoints in the set $X$ covers the entire sphere. Geodetic on sphere $S^n$ is a curve lying on some circle of intersection of the sphere $S^n\subset R^{n+1}$ two-dimensional linear subspace $L \subset R^{n+1}$

1969 IMO Shortlist, 27

$(GBR 4)$ The segment $AB$ perpendicularly bisects $CD$ at $X$. Show that, subject to restrictions, there is a right circular cone whose axis passes through $X$ and on whose surface lie the points $A,B,C,D.$ What are the restrictions?

1996 AMC 12/AHSME, 27

Consider two solid spherical balls, one centered at $(0, 0, \frac{21}{2} )$ with radius $6$, and the other centered at $(0, 0, 1)$ with radius $\frac 92$ . How many points $(x, y, z)$ with only integer coordinates (lattice points) are there in the intersection of the balls? $\text{(A)}\ 7 \qquad \text{(B)}\ 9 \qquad \text{(C)}\ 11 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15$

2008 Pre-Preparation Course Examination, 3

Prove that we can put $ \Omega(\frac1{\epsilon})$ points on surface of a sphere with radius 1 such that distance of each of these points and the plane passing through center and two of other points is at least $ \epsilon$.

1978 IMO Longlists, 50

A variable tetrahedron $ABCD$ has the following properties: Its edge lengths can change as well as its vertices, but the opposite edges remain equal $(BC = DA, CA = DB, AB = DC)$; and the vertices $A,B,C$ lie respectively on three fixed spheres with the same center $P$ and radii $3, 4, 12$. What is the maximal length of $PD$?

2013 F = Ma, 13

There is a ring outside of Saturn. In order to distinguish if the ring is actually a part of Saturn or is instead part of the satellites of Saturn, we need to know the relation between the velocity $v$ of each layer in the ring and the distance $R$ of the layer to the center of Saturn. Which of the following statements is correct? $\textbf{(A) }$ If $v \propto R$, then the layer is part of Saturn. $\textbf{(B) }$ If $v^2 \propto R$, then the layer is part of the satellites of Saturn. $\textbf{(C) }$ If $v \propto 1/R$, then the layer is part of Saturn. $\textbf{(D) }$ If $v^2 \propto 1/R$, then the layer is part of Saturn. $\textbf{(E) }$ If $v \propto R^2$, then the layer is part of the satellites of Saturn.

1993 All-Russian Olympiad Regional Round, 11.3

Point $O$ is the foot of the altitude of a quadrilateral pyramid. A sphere with center $O$ is tangent to all lateral faces of the pyramid. Points $A,B,C,D$ are taken on successive lateral edges so that segments $AB$, $BC$, and $CD$ pass through the three corresponding tangency points of the sphere with the faces. Prove that the segment $AD$ passes through the fourth tangency point

1989 Romania Team Selection Test, 4

Let $A,B,C$ be variable points on edges $OX,OY,OZ$ of a trihedral angle $OXYZ$, respectively. Let $OA = a, OB = b, OC = c$ and $R$ be the radius of the circumsphere $S$ of $OABC$. Prove that if points $A,B,C$ vary so that $a+b+c = R+l$, then the sphere $S$ remains tangent to a fixed sphere.

1987 IMO Longlists, 38

Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? [i]Proposed by Iceland.[/i]

1960 Czech and Slovak Olympiad III A, 2

Consider a cube $ABCDA'B'C'D'$ (where $ABCD$ is a square and $AA' \parallel BB' \parallel CC' \parallel DD'$) and a point $P$ on the line $AA'$. Construct center $S$ of a sphere which has plane $ABB'$ as a plane of symmetry, $P$ lies on the sphere and $p = AB$, $q = A'D'$ are its tangent lines. Discuss conditions of solvability with respect to different position of the point $P$ (on line $AA'$).

2006 Harvard-MIT Mathematics Tournament, 9

Four spheres, each of radius $r$, lie inside a regular tetrahedron with side length $1$ such that each sphere is tangent to three faces of the tetrahedron and to the other three spheres. Find $r$.

2016 BMT Spring, 16

What is the radius of the largest sphere that fits inside the tetrahedron whose vertices are the points $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$?

1966 German National Olympiad, 6

Prove the following theorem: If the intersection of any plane that has more than one point in common with the surface $F$ is a circle, then $F$ is a sphere (surface).

2013 F = Ma, 10

Which of the following can be used to distinguish a solid ball from a hollow sphere of the same radius and mass? $\textbf{(A)}$ Measurements of the orbit of a test mass around the object. $\textbf{(B)}$ Measurements of the time it takes the object to roll down an inclined plane. $\textbf{(C)}$ Measurements of the tidal forces applied by the object to a liquid body. $\textbf{(D)}$ Measurements of the behavior of the object as it oats in water. $\textbf{(E)}$ Measurements of the force applied to the object by a uniform gravitational field.