This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1990 IMO Shortlist, 10

A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part. [i]Original formulation:[/i] A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.

1999 All-Russian Olympiad Regional Round, 11.4

A polyhedron is circumscribed around a sphere. Let's call its face [i]large [/i] if the projection of the sphere onto the plane of the face falls entirely within the face. Prove that there are no more than 6 large faces.

1989 Polish MO Finals, 2

Three circles of radius $a$ are drawn on the surface of a sphere of radius $r$. Each pair of circles touches externally and the three circles all lie in one hemisphere. Find the radius of a circle on the surface of the sphere which touches all three circles.

2001 All-Russian Olympiad, 4

A sphere with center on the plane of the face $ABC$ of a tetrahedron $SABC$ passes through $A$, $B$ and $C$, and meets the edges $SA$, $SB$, $SC$ again at $A_1$, $B_1$, $C_1$, respectively. The planes through $A_1$, $B_1$, $C_1$ tangent to the sphere meet at $O$. Prove that $O$ is the circumcenter of the tetrahedron $SA_1B_1C_1$.

2009 Iran MO (3rd Round), 7

A sphere is inscribed in polyhedral $P$. The faces of $P$ are coloured with black and white in a way that no two black faces share an edge. Prove that the sum of surface of black faces is less than or equal to the sum of the surface of the white faces. Time allowed for this problem was 1 hour.

1994 Chile National Olympiad, 4

Consider a box of dimensions $10$ cm $\times 16$ cm $\times 1$ cm. Determine the maximum number of balls of diameter $ 1$ cm that the box can contain.

2014 BMT Spring, 13

A cylinder is inscribed within a sphere of radius 10 such that its volume is [i]almost-half[/i] that of the sphere. If [i]almost-half[/i] is defined such that the cylinder has volume $\frac12+\frac{1}{250}$ times the sphere’s volume, find the sum of all possible heights for the cylinder.

Champions Tournament Seniors - geometry, 2008.4

Given a quadrangular pyramid $SABCD$, the basis of which is a convex quadrilateral $ABCD$. It is known that the pyramid can be tangent to a sphere. Let $P$ be the point of contact of this sphere with the base $ABCD$. Prove that $\angle APB + \angle CPD = 180^o$.

1995 IMO Shortlist, 6

Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that \[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\] and \[ \frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.\]

2023 Olympic Revenge, 3

Define a $\emph{big circle}$ in a sphere as a circle that has two diametrically oposite points of the sphere in it. Suppose $(AB)$ as the big circle that passes through $A$ and $B$. Also, let a $\emph{Spheric Triangle}$ be $3$ connected by big circles. The angle between two circles that intersect is defined by the angle between the two tangent lines from the intersection point through the two circles in their respective planes. Define also $\angle XYZ$ the angle between $(XY)$ and $(YZ)$. Two circles are tangent if the angle between them is 0. All the points in the following problem are in a sphere S. Let $\Delta ABC$ be a spheric triangle with all its angles $<90^{\circ}$ such that there is a circle $\omega$ tangent to $(BC)$,$(CA)$,$(AB)$ in $D,E,F$. Show that there is $P\in S$ with $\angle PAB=\angle DAC$, $\angle PCA=\angle FCB$, $\angle PBA=\angle EBC$.

2019 Indonesia Juniors, day 2

P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations. \[ \begin{cases} x + y - 6 &= \sqrt{2x + y + 1} \\ x^2 - x &= 3y + 5 \end{cases} \] P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number. P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron). P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence. [hide=Remarks (Answer spoiled)]It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy.[/hide] P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying: \[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]

1955 Polish MO Finals, 6

Through points $ A $ and $ B $ two oblique lines $ m $ and $ n $ are drawn perpendicular to the line $ AB $. On line $ m $ the point $ C $ (different from $ A $) is taken, and on line $ n $ the point $ D $ (different from $ B $) is taken. Given the lengths of segments $ AB = d $ and $ CD = l $ and the angle $ \varphi $ formed by the oblique lines $ m $ and $ n $, calculate the radius of the surface of the sphere passing through the points $ A $, $ B $, $ C $, $ D $.

2010 AMC 10, 12

Logan is constructing a scaled model of his town. The city's water tower stands $ 40$ meters high, and the top portion is a sphere that holds $ 100,000$ liters of water. Logan's miniature water tower holds $ 0.1$ liters. How tall, in meters, should Logan make his tower? $ \textbf{(A)}\ 0.04\qquad \textbf{(B)}\ \frac{0.4}{\pi}\qquad \textbf{(C)}\ 0.4\qquad \textbf{(D)}\ \frac{4}{\pi}\qquad \textbf{(E)}\ 4$

1972 IMO Longlists, 13

Given a sphere $K$, determine the set of all points $A$ that are vertices of some parallelograms $ABCD$ that satisfy $AC \le BD$ and whose entire diagonal $BD$ is contained in $K$.

1981 Poland - Second Round, 6

The surface areas of the bases of a given truncated triangular pyramid are equal to $ B_1 $ and $ B_2 $. This pyramid can be cut with a plane parallel to the bases so that a sphere can be inscribed in each of the obtained parts. Prove that the lateral surface area of the given pyramid is $ (\sqrt{B_1} + \sqrt{B_2})(\sqrt[4]{B_1} + \sqrt[4]{B_2})^2 $.

2000 All-Russian Olympiad Regional Round, 11.2

The height and radius of the base of the cylinder are equal to $1$. What is the smallest number of balls of radius $1$ that can cover the entire cylinder?

1983 IMO Longlists, 71

Prove that every partition of $3$-dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb R^+$, there are points $M$ and $N$ inside that subset such that distance between $M$ and $N$ is exactly $a.$

1902 Eotvos Mathematical Competition, 2

Let $S$ be a given sphere with center $O$ and radius $r$. Let $P$ be any point outside then sphere $S$, and let $S'$ be the sphere with center $P$ and radius $PO$. Denote by $F$ the area of the surface of the part of $S'$ that lies inside $S$. Prove that $F$ is independent of the particular point $P$ chosen.

1999 Harvard-MIT Mathematics Tournament, 9

What fraction of the Earth's volume lies above the $45$ degrees north parallel? You may assume the Earth is a perfect sphere. The volume in question is the smaller piece that we would get if the sphere were sliced into two pieces by a plane.

1967 IMO Shortlist, 5

Faces of a convex polyhedron are six squares and 8 equilateral triangles and each edge is a common side for one triangle and one square. All dihedral angles obtained from the triangle and square with a common edge, are equal. Prove that it is possible to circumscribe a sphere around the polyhedron, and compute the ratio of the squares of volumes of that polyhedron and of the ball whose boundary is the circumscribed sphere.

2012 Today's Calculation Of Integral, 778

In the $xyz$ space with the origin $O$, Let $K_1$ be the surface and inner part of the sphere centered on the point $(1,\ 0,\ 0)$ with radius 2 and let $K_2$ be the surface and inner part of the sphere centered on the point $(-1,\ 0,\ 0)$ with radius 2. For three points $P,\ Q,\ R$ in the space, consider points $X,\ Y$ defined by \[\overrightarrow{OX}=\overrightarrow{OP}+\overrightarrow{OQ},\ \overrightarrow{OY}=\frac 13(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}).\] (1) When $P,\ Q$ move every cranny in $K_1,\ K_2$ respectively, find the volume of the solid generated by the whole points of the point $X$. (2) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1$. (3) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1\cup K_2$.

2007 Hungary-Israel Binational, 2

Given is an ellipse $ e$ in the plane. Find the locus of all points $ P$ in space such that the cone of apex $ P$ and directrix $ e$ is a right circular cone.

2008 USAPhO, 2

A uniform pool ball of radius $r$ and mass $m$ begins at rest on a pool table. The ball is given a horizontal impulse $J$ of fixed magnitude at a distance $\beta r$ above its center, where $-1 \le \beta \le 1$. The coefficient of kinetic friction between the ball and the pool table is $\mu$. You may assume the ball and the table are perfectly rigid. Ignore effects due to deformation. (The moment of inertia about the center of mass of a solid sphere of mass $m$ and radius $r$ is $I_{cm} = \frac{2}{5}mr^2$.) [asy] size(250); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); filldraw(circle((0,0),1),gray(.8)); draw((-3,-1)--(3,-1)); draw((-2.4,0.1)--(-2.4,0.6),EndArrow); draw((-2.5,0)--(2.5,0),dashed); draw((-2.75,0.7)--(-0.8,0.7),EndArrow); label("$J$",(-2.8,0.7),W); label("$\beta r$",(-2.3,0.35),E); draw((0,-1.5)--(0,1.5),dashed); draw((1.7,-0.1)--(1.7,-0.9),BeginArrow,EndArrow); label("$r$",(1.75,-0.5),E); [/asy] (a) Find an expression for the final speed of the ball as a function of $J$, $m$, and $\beta$. (b) For what value of $\beta$ does the ball immediately begin to roll without slipping, regardless of the value of $\mu$?

1986 Flanders Math Olympiad, 4

Given a cube in which you can put two massive spheres of radius 1. What's the smallest possible value of the side - length of the cube? Prove that your answer is the best possible.

1984 Bundeswettbewerb Mathematik, 4

A sphere is touched by all the four sides of a (space) quadrilateral. Prove that all the four touching points are in the same plane.