This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

1986 Tournament Of Towns, (120) 2

Square $ABCD$ and circle $O$ intersect in eight points, forming four curvilinear triangles, $AEF , BGH , CIJ$ and $DKL$ ($EF , GH, IJ$ and $KL$ are arcs of the circle) . Prove that (a) The sum of lengths of $EF$ and $IJ$ equals the sum of the lengths of $GH$ and $KL$. (b) The sum of the perimeters of curvilinear triangles $AEF$ and $CIJ$ equals the sum of the perimeters of the curvilinear triangles $BGH$ and $DKL$. ( V . V . Proizvolov , Moscow)

Novosibirsk Oral Geo Oly IX, 2016.4

The two angles of the squares are adjacent, and the extension of the diagonals of one square intersect the diagonal of another square at point $O$ (see figure). Prove that $O$ is the midpoint of $AB$. [img]https://cdn.artofproblemsolving.com/attachments/7/8/8daaaa55c38e15c4a8ac7492c38707f05475cc.png[/img]

1955 Moscow Mathematical Olympiad, 291

Find all rectangles that can be cut into $13$ equal squares.

1982 Bulgaria National Olympiad, Problem 6

Find the locus of centroids of equilateral triangles whose vertices lie on sides of a given square $ABCD$.

2010 IFYM, Sozopol, 4

Tags: square , geometry
Let $ABCD$ be a square with side 1. On the sides $BC$ and $CD$ are chosen points $P$ and $Q$ where $AP$ and $AQ$ intersect the diagonal $BD$ in points $M$ and $N$ respectively. If $DQ\neq BP$ and the line through $A$ and the intersection point of $MQ$ and $NP$ is perpendicular to $PQ$, prove that $\angle MAN=45^\circ$.

1983 Spain Mathematical Olympiad, 5

Find the coordinates of the vertices of a square $ABCD$, knowing that $A$ is on the line $y -2x -6 = 0$, $C$ at $x = 0$ and $B$ is the point $(a, 0)$ , being $a = \log_{2/3}(16/81)$.

1997 Bundeswettbewerb Mathematik, 3

A square $S_a$ is inscribed in an acute-angled triangle $ABC$ with two vertices on side $BC$ and one on each of sides $AC$ and $AB$. Squares $S_b$ and $S_c$ are analogously inscribed in the triangle. For which triangles are the squares $S_a,S_b$, and $S_c$ congruent?

2022 Bolivia Cono Sur TST, P3

Is it possible to complete the following square knowning that each row and column make an aritmetic progression?

1981 Bundeswettbewerb Mathematik, 3

A square of sidelength $2^n$ is divided into unit squares. One of the unit squares is deleted. Prove that the rest of the square can be tiled with $L$-trominos.

2013 BMT Spring, 4

Let $ABCD$ be a square with side length $2$, and let a semicircle with flat side $CD$ be drawn inside the square. Of the remaining area inside the square outside the semi-circle, the largest circle is drawn. What is the radius of this circle?

May Olympiad L2 - geometry, 2002.3

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the intersection point of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

2016 Auckland Mathematical Olympiad, 2

In square $ABCD$, $\overline{AC}$ and $\overline{BD}$ meet at point $E$. Point $F$ is on $\overline{CD}$ and $\angle CAF = \angle FAD$. If $\overline{AF}$ meets $\overline{ED}$ at point $G$, and if $\overline{EG} = 24$ cm, then find the length of $\overline{CF}$.

2018 Lusophon Mathematical Olympiad, 2

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the intersection point of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

1981 All Soviet Union Mathematical Olympiad, 314

Is it possible to fill a rectangular table with black and white squares (only) so, that the number of black squares will equal to the number of white squares, and each row and each column will have more than $75\%$ squares of the same colour?

2000 Abels Math Contest (Norwegian MO), 3

a) Each point, on the perimeter of a square, is colored either red, or blue. Show that, there is a right-angled triangle where all the corners are on the square of the square and so that all the corners are on points of the same color. b) Show that, it is possible to color each point on the perimeter of one square, red, white, or blue so that, there is not a right-angled triangle where all the three corners are at points of same color.

Kyiv City MO Seniors 2003+ geometry, 2010.10.3

A point $O$ is chosen inside the square $ABCD$. The square $A'B'C'D'$ is the image of the square $ABCD$ under the homothety with center at point $O$ and coefficient $k> 1$ (points $A', B', C', D' $ are images of points $A, B, C, D$ respectively). Prove that the sum of the areas of the quadrilaterals $A'ABB'$ and $C'CDD'$ is equal to the sum of the areas quadrilaterals $B'BCC'$ and $D'DAA'$.

1906 Eotvos Mathematical Competition, 2

Tags: geometry , rhombus , square
Let $K, L,M,N$ designate the centers of the squares erected on the four sides (outside) of a rhombus. Prove that the polygon $KLMN$ is a square.

1985 Tournament Of Towns, (088) 4

A square is divided into $5$ rectangles in such a way that its $4$ vertices belong to $4$ of the rectangles , whose areas are equal , and the fifth rectangle has no points in common with the side of the square (see diagram) . Prove that the fifth rectangle is a square. [img]https://3.bp.blogspot.com/-TQc1v_NODek/XWHHgmONboI/AAAAAAAAKi4/XES55OJS5jY9QpNmoURp4y80EkanNzmMwCK4BGAYYCw/s1600/TOT%2B1985%2BSpring%2BJ4.png[/img]

2000 Tuymaada Olympiad, 6

Let $O$ be the center of the circle circumscribed around the the triangle $ABC$. The centers of the circles circumscribed around the squares $OAB,OBC,OCA$ lie at the vertices of a regular triangle. Prove that the triangle $ABC$ is right.

1997 Spain Mathematical Olympiad, 2

A square of side $5$ is divided into $25$ unit squares. Let $A$ be the set of the $16$ interior points of the initial square which are vertices of the unit squares. What is the largest number of points of $A$ no three of which form an isosceles right triangle?

2017 Sharygin Geometry Olympiad, 5

A square $ABCD$ is given. Two circles are inscribed into angles $A$ and $B$, and the sum of their diameters is equal to the sidelength of the square. Prove that one of their common tangents passes through the midpoint of $AB$.

2010 QEDMO 7th, 4

Tags: geometry , square , area
Let $ABCD$ and $A'B'C'D'$ be two squares, both are oriented clockwise. In addition, it is assumed that all points are arranged as shown in the figure.Then it has to be shown that the sum of the areas of the quadrilaterals $ABB'A'$ and $CDD'C'$ equal to the sum of the areas of the quadrilaterals $BCC'B'$ and $DAA'D'$. [img]https://cdn.artofproblemsolving.com/attachments/0/2/6f7f793ded22fe05a7b0a912ef6c4e132f963e.png[/img]

2019 Costa Rica - Final Round, LR3

Tags: geometry , square , area
Consider the following sequence of squares (side $1$), in each step the central square is divided into equal parts and colored as shown in the figure: [img]https://cdn.artofproblemsolving.com/attachments/9/0/6874ab5aecadf2112fbe4a196ab3091ab8b31a.png[/img] Square 1 Square 2 Square 3 Let $A_n$ with $n \in N$, $n> 1$ be the shaded area of square $n$, show that $A_n <\frac23$

Swiss NMO - geometry, 2008.5

Tags: locus , square , geometry
Let $ABCD$ be a square with side length $1$. Find the locus of all points $P$ with the property $AP\cdot CP + BP\cdot DP = 1$.

1996 Cono Sur Olympiad, 1

In the following figure, the largest square is divided into two squares and three rectangles, as shown: The area of each smaller square is equal to $a$ and the area of each small rectangle is equal to $b$. If $a+b=24$ and the root square of $a$ is a natural number, find all possible values for the area of the largest square. [img]https://cdn.artofproblemsolving.com/attachments/f/a/0b424d9c293889b24d9f31b1531bed5081081f.png[/img]