This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

2013 Tournament of Towns, 2

Let $C$ be a right angle in triangle $ABC$. On legs $AC$ and$BC$ the squares $ACKL, BCMN$ are constructed outside of triangle. If $CE$ is an altitude of the triangle prove that $LEM$ is a right angle.

2016 BMT Spring, 3

Consider an equilateral triangle and square, both with area $1$. What is the product of their perimeters?

1957 Moscow Mathematical Olympiad, 367

Tags: area , geometry , fixed , square
Two rectangles on a plane intersect at eight points. Consider every other intersection point, they are connected with line segments, these segments form a quadrilateral. Prove that the area of this quadrilateral does not vary under translations of one of the rectangles.

2013 International Zhautykov Olympiad, 3

A $10 \times 10$ table consists of $100$ unit cells. A [i]block[/i] is a $2 \times 2$ square consisting of $4$ unit cells of the table. A set $C$ of $n$ blocks covers the table (i.e. each cell of the table is covered by some block of $C$ ) but no $n -1$ blocks of $C$ cover the table. Find the largest possible value of $n$.

Novosibirsk Oral Geo Oly VIII, 2023.7

A square with side $1$ is intersected by two parallel lines as shown in the figure. Find the sum of the perimeters of the shaded triangles if the distance between the lines is also $1$. [img]https://cdn.artofproblemsolving.com/attachments/9/e/4e70610b80871325a72e923a0909eff06aebfa.png[/img]

1974 Bundeswettbewerb Mathematik, 3

A circle $K_1$ of radius $r_1 = 1\slash 2$ is inscribed in a semi-circle $H$ with diameter $AB$ and radius $1.$ A sequence of different circles $K_2, K_3, \ldots$ with radii $r_2, r_3, \ldots$ respectively are drawn so that for each $n\geq 1$, the circle $K_{n+1}$ is tangent to $H$, $K_n$ and $AB.$ Prove that $a_n = 1\slash r_n$ is an integer for each $n$, and that it is a perfect square for $n$ even and twice a perfect square for $n$ odd.

2003 Junior Balkan Team Selection Tests - Romania, 4

Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.

2020 Regional Olympiad of Mexico Center Zone, 4

Tags: geometry , square , circles
Let $\Gamma_1$ be a circle with center $O$ and $A$ a point on it. Consider the circle $\Gamma_2$ with center at $A$ and radius $AO$. Let $P$ and $Q$ be the intersection points of $\Gamma_1$and $\Gamma_2$. Consider the circle $\Gamma_3$ with center at $P$ and radius $PQ$. Let $C$ be the second intersection point of $\Gamma_3$ and $\Gamma_1$. The line $OP$ cuts $\Gamma_3$ at $R$ and $S$, with $R$ outside $\Gamma_1$. $RC$ cuts $\Gamma_1$ into $B$. $CS$ cuts $\Gamma_1$ into $D$. Show that $ABCD$ is a square.

2004 Paraguay Mathematical Olympiad, 4

In a square $ABCD$, $E$ is the midpoint of $BC$ and $F$ is the midpoint of $CD$. Prove that $AF$ and $AE$ divide the diagonal $BD$ in three equal segments.

1958 February Putnam, A7

Tags: geometry , square
Show that ten equal-sized squares cannot be placed on a plane in such a way that no two have an interior point in common and the first touches each of the others.

1977 IMO Longlists, 29

In the interior of a square $ABCD$ we construct the equilateral triangles $ABK, BCL, CDM, DAN.$ Prove that the midpoints of the four segments $KL, LM, MN, NK$ and the midpoints of the eight segments $AK, BK, BL, CL, CM, DM, DN, AN$ are the 12 vertices of a regular dodecagon.

1992 All Soviet Union Mathematical Olympiad, 559

$E$ is a point on the diagonal $BD$ of the square $ABCD$. Show that the points $A, E$ and the circumcenters of $ABE$ and $ADE$ form a square.

May Olympiad L1 - geometry, 2013.3

Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the triangle $ PCR$ [img]https://3.bp.blogspot.com/-ZSyCUznwutE/XNY7cz7reQI/AAAAAAAAKLc/XqgQnjm8DQYq6Q7fmCAKJwKt3ihoL8AuQCK4BGAYYCw/s400/may%2B2013%2Bl1.png[/img]

1967 IMO Longlists, 10

The square $ABCD$ has to be decomposed into $n$ triangles (which are not overlapping) and which have all angles acute. Find the smallest integer $n$ for which there exist a solution of that problem and for such $n$ construct at least one decomposition. Answer whether it is possible to ask moreover that (at least) one of these triangles has the perimeter less than an arbitrarily given positive number.

2018 Romania National Olympiad, 2

In the square $ABCD$ the point $E$ is located on the side $[AB]$, and $F$ is the foot of the perpendicular from $B$ on the line $DE$. The point $L$ belongs to the line $DE$, such that $F$ is between $E$ and $L$, and $FL = BF$. $N$ and $P$ are symmetric of the points $A , F$ with respect to the lines $DE, BL$, respectively. Prove that: a) The quadrilateral $BFLP$ is square and the quadrilateral $ALND$ is rhombus. b) The area of the rhombus $ALND$ is equal to the difference between the areas of the squares $ABCD$ and $BFLP$.

2019 Regional Olympiad of Mexico West, 2

Given a square $ABCD$, points $E$ and $F$ are taken inside the segments $BC$ and $CD$ so that $\angle EAF = 45^o$. The lines $AE$ and $AF$ intersect the circle circumscribed to the square at points $G$ and $H$ respectively. Prove that lines $EF$ and $GH$ are parallel.

2003 Junior Balkan Team Selection Tests - Romania, 4

Let $E$ be the midpoint of the side $CD$ of a square $ABCD$. Consider the point $M$ inside the square such that $\angle MAB = \angle MBC = \angle BME = x$. Find the angle $x$.

2015 Sharygin Geometry Olympiad, P3

The side $AD$ of a square $ABCD$ is the base of an obtuse-angled isosceles triangle $AED$ with vertex $E$ lying inside the square. Let $AF$ be a diameter of the circumcircle of this triangle, and $G$ be a point on $CD$ such that $CG = DF$. Prove that angle $BGE$ is less than half of angle $AED$.

Durer Math Competition CD 1st Round - geometry, 2016.C+3

Let $ABCD$ be a square with unit sides. Which interior point $P$ will the expression $\sqrt2 \cdot AP + BP + CP$ have a minimum value, and what is this minimum?

1969 Spain Mathematical Olympiad, 4

Tags: area , octagon , square , geometry
A circle of radius $R$ is divided into $8$ equal parts. The points of division are denoted successively by $A, B, C, D, E, F , G$ and $H$. Find the area of the square formed by drawing the chords $AF$ , $BE$, $CH$ and $DG$.

1977 Dutch Mathematical Olympiad, 2

Four masts stand on a flat horizontal piece of land at the vertices of a square $ABCD$. The height of the mast on $A$ is $7$ meters, of the mast on $B$ $13$ meters, and of the mast on $C$ $15$ meters. Within the square there is a point $P$ on the ground equidistant from each of the tops of these three masts. (a) What length must the sides of the square be at least for this to be possible? (b) The distance from $P$ to the top of the mast on $D$ is equal to the distance from$ P$ to each of the tops of the three other masts. Calculate the height of the mast at $D$.

2013 Argentina National Olympiad Level 2, 6

Is there a square with side lenght $\ell < 1$ that can completely cover any rectangle of diagonal $1$?

1978 All Soviet Union Mathematical Olympiad, 259

Prove that there exists such a number $A$ that you can inscribe $1978$ different size squares in the plot of the function $y = A sin(x)$. (The square is inscribed if all its vertices belong to the plot.)

2020-21 KVS IOQM India, 14

Let $ABC$ be an equilateral triangle with side length $10$. A square $PQRS$ is inscribed in it, with $P$ on $AB, Q, R$ on $BC$ and $S$ on $AC$. If the area of the square $PQRS$ is $m +n\sqrt{k}$ where $m, n$ are integers and $k$ is a prime number then determine the value of $\sqrt{\frac{m+n}{k^2}}$.

1951 Kurschak Competition, 1

$ABCD$ is a square. $E$ is a point on the side $BC$ such that $BE =1/3 BC$, and $F$ is a point on the ray $DC$ such that $CF =1/2 DC$. Prove that the lines $AE$ and $BF$ intersect on the circumcircle of the square. [img]https://cdn.artofproblemsolving.com/attachments/e/d/09a8235d0748ce4479e21a3bb09b0359de54b5.png[/img]