This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

2002 Estonia National Olympiad, 4

Let $a_1, ... ,a_5$ be real numbers such that at least $N$ of the sums $a_i+a_j$ ($i < j$) are integers. Find the greatest value of $N$ for which it is possible that not all of the sums $a_i+a_j$ are integers.

2006 Junior Tuymaada Olympiad, 6

[i]Palindromic partitioning [/i] of the natural number $ A $ is called, when $ A $ is written as the sum of natural the terms $ A = a_1 + a_2 + \ ldots + a_ {n-1} + a_n $ ($ n \geq 1 $), in which $ a_1 = a_n , a_2 = a_ {n-1} $ and in general, $ a_i = a_ {n + 1 - i} $ with $ 1 \leq i \leq n $. For example, $ 16 = 16 $, $ 16 = 2 + 12 + 2 $ and $ 16 = 7 + 1 + 1 + 7 $ are [i]palindromic partitions[/i] of the number $16$. Find the number of all [i]palindromic partitions[/i] of the number $2006$.

2014 German National Olympiad, 3

Given two positive integers $n$ and $k$, we say that $k$ is [i]$n$-ergetic[/i] if: However the elements of $M=\{1,2,\ldots, k\}$ are coloured in red and green, there exist $n$ not necessarily distinct integers of the same colour whose sum is again an element of $M$ of the same colour. For each positive integer $n$, determine the least $n$-ergetic integer, if it exists.

2018 Danube Mathematical Competition, 3

Find all the positive integers $n$ with the property: there exists an integer $k > 2$ and the positive rational numbers $a_1, a_2, ..., a_k$ such that $a_1 + a_2 + .. + a_k = a_1a_2 . . . a_k = n$.

2011 Singapore Junior Math Olympiad, 5

Tags: sum , game , combinatorics
Initially, the number $10$ is written on the board. In each subsequent moves, you can either (i) erase the number $1$ and replace it with a $10$, or (ii) erase the number $10$ and replace it with a $1$ and a $25$ or (iii) erase a $25$ and replace it with two $10$. After sometime, you notice that there are exactly one hundred copies of $1$ on the board. What is the least possible sum of all the numbers on the board at that moment?

1992 Bundeswettbewerb Mathematik, 2

A positive integer $n$ is called [i]good [/i] if they sum up in one and only one way at least of two positive integers whose product also has the value $n$. Here representations that differ only in the order of the summands are considered the same viewed. Find all good positive integers.

2016 Irish Math Olympiad, 3

Tags: root , sum , algebra , polynomial
Do there exist four polynomials $P_1(x), P_2(x), P_3(x), P_4(x)$ with real coefficients, such that the sum of any three of them always has a real root, but the sum of any two of them has no real root?

2015 Bosnia and Herzegovina Junior BMO TST, 4

Let $n$ be a positive integer and let $a_1$, $a_2$,..., $a_n$ be positive integers from set $\{1, 2,..., n\}$ such that every number from this set occurs exactly once. Is it possible that numbers $a_1$, $a_1 + a_2 ,..., a_1 + a_2 + ... + a_n$ all have different remainders upon division by $n$, if: $a)$ $n=7$ $b)$ $n=8$

2018 Grand Duchy of Lithuania, 2

Tags: sum , combinatorics
Ten distinct numbers are chosen at random from the set $\{1, 2, 3, ... , 37\}$. Show that one can select four distinct numbers out of those ten so that the sum of two of them is equal to the sum of the other two.

1999 Portugal MO, 5

Each of the numbers $a_1,...,a_n$ is equal to $1$ or $-1$. If $a_1a_2 + a_2a_3 + ··· + a_{n-1}a_n + a_na_1 = 0$, proves that $n$ is divisible by $4$.

1990 Romania Team Selection Test, 2

Prove the following equality for all positive integers $m,n$: $$\sum_{k=0}^{n} {m+k \choose k} 2^{n-k} +\sum_{k=0}^m {n+k \choose k}2^{m-k}= 2^{m+n+1}$$

2012 Belarus Team Selection Test, 1

A cubic trinomial $x^3 + px + q$ with integer coefficients $p$ and $q$ is said to be [i]irrational [/i] if it has three pairwise distinct real irrational roots $a_1,a_2, a_3$ Find all irrational cubic trinomials for which the value of $|a_1| + [a_2| + |a_3|$ is the minimal possible. (E. Barabanov)

2020 LIMIT Category 2, 18

Evaluate the following sum: $n \choose 1$ $\sin (a) +$ $n \choose 2$ $\sin (2a) +...+$ $n \choose n$ $\sin (na)$ (A) $2^n \cos^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (B) $2^n \sin^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$ (C) $2^n \sin^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (D) $2^n \cos^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$

2019 Gulf Math Olympiad, 3

Consider the set $S = \{1,2,3, ...,1441\}$. 1. Nora counts thoses subsets of $S$ having exactly two elements, tbe sum of which is even. Rania counts those subsets of $S$ having exactly two elements, the sum of which is odd. Determine the numbers counted by Nora and Rania. 2. Let $t$ be the number of subsets of $S$ which have at least two elements and the product of the elements is even. Determine the greatest power of $2$ which divides $t$. 3. Ahmad counts the subsets of $S$ having $77$ elements such that in each subset the sum of the elements is even. Bushra counts the subsets of $S$ having $77$ elements such that in each subset the sum of the elements is odd. Whose number is bigger? Determine the difference between the numbers found by Ahmad and Bushra.

2000 Junior Balkan Team Selection Tests - Moldova, 2

The number $665$ is represented as a sum of $18$ natural numbers nenule $a_1, a_2, ..., a_{18}$. Determine the smallest possible value of the smallest common multiple of the numbers $a_1, a_2, ..., a_{18}$.

1986 All Soviet Union Mathematical Olympiad, 437

Prove that the sum of all numbers representable as $\frac{1}{mn}$, where $m,n$ -- natural numbers, $1 \le m < n \le1986$, is not an integer.

1975 Dutch Mathematical Olympiad, 3

Given are the real numbers $x_1,x_2,...,x_n$ and $t_1,t_2,...,t_n$ for which holds: $\sum_{i=1}^n x_i = 0$. Prove that $$\sum_{i=1}^n \left( \sum_{j=1}^n (t_i-t_j)^2x_ix_j \right)\le 0.$$

2016 All-Russian Olympiad, 5

Tags: sum , number theory
Using each of the digits $1,2,3,\ldots ,8,9$ exactly once,we form nine,not necassarily distinct,nine-digit numbers.Their sum ends in $n$ zeroes,where $n$ is a non-negative integer.Determine the maximum possible value of $n$.

2008 Tournament Of Towns, 3

A polynomial $x^n + a_1x^{n-1} + a_2x^{n-2} +... + a_{n-2}x^2 + a_{n-1}x + a_n$ has $n$ distinct real roots $x_1, x_2,...,x_n$, where $n > 1$. The polynomial $nx^{n-1}+ (n - 1)a_1x^{n-2} + (n - 2)a_2x^{n-3} + ...+ 2a_{n-2}x + a_{n-1}$ has roots $y_1, y_2,..., y_{n_1}$. Prove that $\frac{x^2_1+ x^2_2+ ...+ x^2_n}{n}>\frac{y^2_1 + y^2_2 + ...+ y^2_{n-1}}{n - 1}$

2013 Singapore Junior Math Olympiad, 1

Tags: sum , algebra
Let $a<b<c<d<e$ be real numbers. Among the $10$ sums of the pairs of these numbers, the least $3$ are $32,36,37$, while the largest two are $48$ and $51$. Find all possible values of $e$

1990 Chile National Olympiad, 5

Tags: sum , algebra
Determine a natural $n$ such that $$996 \le \sum_{k = 1}^{n}\frac{1}{k}$$

2015 Dutch IMO TST, 4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

2015 Caucasus Mathematical Olympiad, 1

Does there exist a four-digit positive integer with different non-zero digits, which has the following property: if we add the same number written in the reverse order, then we get a number divisible by $101$?

2019 Durer Math Competition Finals, 11

What is the smallest $N$ for which $\sum_{k=1}^{N} k^{2018}$ is divisible by $2018$?

2016 JBMO Shortlist, 1

Let $S_n$ be the sum of reciprocal values of non-zero digits of all positive integers up to (and including) $n$. For instance, $S_{13} = \frac{1}{1}+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4}+ \frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8}+ \frac{1}{9}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{2}+ \frac{1}{1}+ \frac{1}{3}$ . Find the least positive integer $k$ making the number $k!\cdot S_{2016}$ an integer.