Found problems: 701
2008 Tournament Of Towns, 6
Let $ABC$ be a non-isosceles triangle. Two isosceles triangles $AB'C$ with base $AC$ and $CA'B$ with base $BC$ are constructed outside of triangle $ABC$. Both triangles have the same base angle $\varphi$. Let $C_1$ be a point of intersection of the perpendicular from $C$ to $A'B'$ and the perpendicular bisector of the segment $AB$. Determine the value of $\angle AC_1B.$
2002 India IMO Training Camp, 18
Consider the square grid with $A=(0,0)$ and $C=(n,n)$ at its diagonal ends. Paths from $A$ to $C$ are composed of moves one unit to the right or one unit up. Let $C_n$ (n-th catalan number) be the number of paths from $A$ to $C$ which stay on or below the diagonal $AC$. Show that the number of paths from $A$ to $C$ which cross $AC$ from below at most twice is equal to $C_{n+2}-2C_{n+1}+C_n$
Ukrainian TYM Qualifying - geometry, II.16
Inside the circle are given three points that do not belong to one line. In one step it is allowed to replace one of the points with a symmetric one wrt the line containing the other two points. Is it always possible for a finite number of these steps to ensure that all three points are outside the circle?
2003 Hong kong National Olympiad, 2
Let $ABCDEF$ regular hexagon of side length $1$ and $O$ is its center. In addition to the sides of the hexagon, line segments from $O$ to the every vertex are drawn, making as total of $12$ unit segments. Find the number paths of length $2003$ along these segments that star at $O$ and terminate at $O$.
1996 Moldova Team Selection Test, 10
Given an equilateral triangle $ABC$ and a point $M$ in the plane ($ABC$). Let $A', B', C'$ be respectively the symmetric through $M$ of $A, B, C$.
[b]I.[/b] Prove that there exists a unique point $P$ equidistant from $A$ and $B'$, from $B$ and $C'$ and from $C$ and $A'$.
[b]II.[/b] Let $D$ be the midpoint of the side $AB$. When $M$ varies ($M$ does not coincide with $D$), prove that the circumcircle of triangle $MNP$ ($N$ is the intersection of the line $DM$ and $AP$) pass through a fixed point.
2013 Romania Team Selection Test, 1
Given an integer $n\geq 2,$ let $a_{n},b_{n},c_{n}$ be integer numbers such that \[
\left( \sqrt[3]{2}-1\right) ^{n}=a_{n}+b_{n}\sqrt[3]{2}+c_{n}\sqrt[3]{4}.
\] Prove that $c_{n}\equiv 1\pmod{3} $ if and only if $n\equiv 2\pmod{3}.$
2008 Harvard-MIT Mathematics Tournament, 27
Cyclic pentagon $ ABCDE$ has a right angle $ \angle{ABC} \equal{} 90^{\circ}$ and side lengths $ AB \equal{} 15$ and $ BC \equal{} 20$. Supposing that $ AB \equal{} DE \equal{} EA$, find $ CD$.
2008 Turkey MO (2nd round), 1
Given an acute angled triangle $ ABC$ , $ O$ is the circumcenter and $ H$ is the orthocenter.Let $ A_1$,$ B_1$,$ C_1$ be the midpoints of the sides $ BC$,$ AC$ and $ AB$ respectively. Rays $ [HA_1$,$ [HB_1$,$ [HC_1$ cut the circumcircle of $ ABC$ at $ A_0$,$ B_0$ and $ C_0$ respectively.Prove that $ O$,$ H$ and $ H_0$ are collinear if $ H_0$ is the orthocenter of $ A_0B_0C_0$
2006 Poland - Second Round, 1
Positive integers $a,b,c,x,y,z$ satisfy:
$a^2+b^2=c^2$, $x^2+y^2=z^2$
and
$|x-a| \leq 1$ , $|y-b| \leq 1$.
Prove that sets $\{a,b\}$ and $\{x,y\}$ are equal.
2007 South East Mathematical Olympiad, 4
A sequence of positive integers with $n$ terms satisfies $\sum_{i=1}^{n} a_i=2007$. Find the least positive integer $n$ such that there exist some consecutive terms in the sequence with their sum equal to $30$.
2005 Iran Team Selection Test, 2
Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that:
\[PX || AC \ , \ PY ||AB \]
Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$
2014 Iran Geometry Olympiad (senior), 5:
Two points $P$ and $Q$ lying on side $BC$ of triangle $ABC$ and their distance from the midpoint of $BC$ are equal.The perpendiculars from $P$ and $Q$ to $BC$ intersect $AC$ and $AB$ at $E$ and $F$,respectively.$M$ is point of intersection $PF$ and $EQ$.If $H_1$ and $H_2$ be the orthocenters of triangles $BFP$ and $CEQ$, respectively, prove that $ AM\perp H_1H_2 $.
Author:Mehdi E'tesami Fard , Iran
2013 Turkey MO (2nd round), 1
The circle $\omega_1$ with diameter $[AB]$ and the circle $\omega_2$ with center $A$ intersects at points $C$ and $D$. Let $E$ be a point on the circle $\omega_2$, which is outside $\omega_1$ and at the same side as $C$ with respect to the line $AB$. Let the second point of intersection of the line $BE$ with $\omega_2$ be $F$. For a point $K$ on the circle $\omega_1$ which is on the same side as $A$ with respect to the diameter of $\omega_1$ passing through $C$ we have $2\cdot CK \cdot AC = CE \cdot AB$. Let the second point of intersection of the line $KF$ with $\omega_1$ be $L$. Show that the symmetric of the point $D$ with respect to the line $BE$ is on the circumcircle of the triangle $LFC$.
2001 USAMO, 3
Let $a, b, c \geq 0$ and satisfy \[ a^2+b^2+c^2 +abc = 4 . \] Show that \[ 0 \le ab + bc + ca - abc \leq 2. \]
2005 AMC 12/AHSME, 25
Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex?
$ \textbf{(A)}\ \frac {5}{256} \qquad
\textbf{(B)}\ \frac {21}{1024} \qquad
\textbf{(C)}\ \frac {11}{512} \qquad
\textbf{(D)}\ \frac {23}{1024} \qquad
\textbf{(E)}\ \frac {3}{128}$
1954 Moscow Mathematical Olympiad, 275
How many axes of symmetry can a heptagon have?
2009 Romania Team Selection Test, 1
The quadrilateral $ ABCD$ inscribed in a circle wich has diameter $ BD$. Let $ A',B'$ are symmetric to $ A,B$ with respect to the line $ BD$ and $ AC$ respectively. If $ A'C \cap BD \equal{} P$ and $ AC\cap B'D \equal{} Q$ then prove that $ PQ \perp AC$
2010 All-Russian Olympiad Regional Round, 9.4
In triangle $ABC$, $\angle A =60^o$. Let $BB_1$ and $CC_1$ be angle bisectors of this triangle. Prove that the point symmetrical to vertex $A$ with respect to line $B_1C_1$ lies on side $BC$.
2007 Moldova Team Selection Test, 1
Show that the plane cannot be represented as the union of the inner regions of a finite number of parabolas.
1996 AIME Problems, 12
For each permutation $ a_1, a_2, a_3, \ldots,a_{10}$ of the integers $ 1,2,3,\ldots,10,$ form the sum
\[ |a_1 \minus{} a_2| \plus{} |a_3 \minus{} a_4| \plus{} |a_5 \minus{} a_6| \plus{} |a_7 \minus{} a_8| \plus{} |a_9 \minus{} a_{10}|.\]
The average value of all such sums can be written in the form $ p/q,$ where $ p$ and $ q$ are relatively prime positive integers. Find $ p \plus{} q.$
1994 IMO Shortlist, 3
A circle $ C$ has two parallel tangents $ L'$ and$ L"$. A circle $ C'$ touches $ L'$ at $ A$ and $ C$ at $ X$. A circle $ C"$ touches $ L"$ at $ B$, $ C$ at $ Y$ and $ C'$ at $ Z$. The lines $ AY$ and $ BX$ meet at $ Q$. Show that $ Q$ is the circumcenter of $ XYZ$
2009 Brazil Team Selection Test, 4
There is given a convex quadrilateral $ ABCD$. Prove that there exists a point $ P$ inside the quadrilateral such that
\[
\angle PAB \plus{} \angle PDC \equal{} \angle PBC \plus{} \angle PAD \equal{} \angle PCD \plus{} \angle PBA \equal{} \angle PDA \plus{} \angle PCB = 90^{\circ}
\]
if and only if the diagonals $ AC$ and $ BD$ are perpendicular.
[i]Proposed by Dusan Djukic, Serbia[/i]
2010 IFYM, Sozopol, 3
Through vertex $C$ of $\Delta ABC$ are constructed lines $l_1$ and $l_2$ which are symmetrical about the angle bisector $CL_c$. Prove that the projections of $A$ and $B$ on lines $l_1$ and $l_2$ lie on one circle.
2005 AMC 10, 8
Square $ EFGH$ is inside the square $ ABCD$ so that each side of $ EFGH$ can be extended to pass through a vertex of $ ABCD$. Square $ ABCD$ has side length $ \sqrt {50}$ and $ BE \equal{} 1$. What is the area of the inner square $ EFGH$?
[asy]unitsize(4cm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
pair D=(0,0), C=(1,0), B=(1,1), A=(0,1);
pair F=intersectionpoints(Circle(D,2/sqrt(5)),Circle(A,1))[0];
pair G=foot(A,D,F), H=foot(B,A,G), E=foot(C,B,H);
draw(A--B--C--D--cycle);
draw(D--F);
draw(C--E);
draw(B--H);
draw(A--G);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",E,NNW);
label("$F$",F,ENE);
label("$G$",G,SSE);
label("$H$",H,WSW);[/asy]$ \textbf{(A)}\ 25\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 36\qquad \textbf{(D)}\ 40\qquad \textbf{(E)}\ 42$
2011 China Second Round Olympiad, 1
Let $P,Q$ be the midpoints of diagonals $AC,BD$ in cyclic quadrilateral $ABCD$. If $\angle BPA=\angle DPA$, prove that $\angle AQB=\angle CQB$.