Found problems: 701
2010 Malaysia National Olympiad, 7
Let $ABC$ be a triangle in which $AB=AC$ and let $I$ be its incenter. It is known that $BC=AB+AI$. Let $D$ be a point on line $BA$ extended beyond $A$ such that $AD=AI$. Prove that $DAIC$ is a cyclic quadrilateral.
PEN D Problems, 11
During a break, $n$ children at school sit in a circle around their teacher to play a game. The teacher walks clockwise close to the children and hands out candies to some of them according to the following rule. He selects one child and gives him a candy, then he skips the next child and gives a candy to the next one, then he skips 2 and gives a candy to the next one, then he skips 3, and so on. Determine the values of $n$ for which eventually, perhaps after many rounds, all children will have at least one candy each.
1999 AMC 8, 23
Square $ABCD$ has sides of length 3. Segments $CM$ and $CN$ divide the square's area into three equal parts. How long is segment $CM$ ?
[asy]
pair A,B,C,D,M,N;
A = (0,0);
B = (0,3);
C = (3,3);
D = (3,0);
M = (0,1);
N = (1,0);
draw(A--B--C--D--cycle);
draw(M--C--N);
label("$A$",A,SW);
label("$M$",M,W);
label("$B$",B,NW);
label("$C$",C,NE);
label("$D$",D,SE);
label("$N$",N,S);[/asy]
$ \text{(A)}\ \sqrt{10}\qquad\text{(B)}\ \sqrt{12}\qquad\text{(C)}\ \sqrt{13}\qquad\text{(D)}\ \sqrt{14}\qquad\text{(E)}\ \sqrt{15} $
1980 IMO Longlists, 21
Let $AB$ be a diameter of a circle; let $t_1$ and $t_2$ be the tangents at $A$ and $B$, respectively; let $C$ be any point other than $A$ on $t_1$; and let $D_1D_2. E_1E_2$ be arcs on the circle determined by two lines through $C$. Prove that the lines $AD_1$ and $AD_2$ determine a segment on $t_2$ equal in length to that of the segment on $t_2$ determined by $AE_1$ and $AE_2.$
1981 Tournament Of Towns, (008) 2
$M$ is a finite set of points in a plane. Point $O$ in the plane is called an “almost centre of symmetry” of set $M$ if it is possible to remove from $M$ one point in such a way that among the remaining members $O$ is the centre of symmetry in the usual sense. How many such “almost centres of symmetry” may a finite point set in a plane have? Indicate all such points.
(V Prasolov, Moscow)
2014 AMC 10, 25
In a small pond there are eleven lily pads in a row labeled $0$ through $10$. A frog is sitting on pad $1$. When the frog is on pad $N$, $0<N<10$, it will jump to pad $N-1$ with probability $\frac{N}{10}$ and to pad $N+1$ with probability $1-\frac{N}{10}$. Each jump is independent of the previous jumps. If the frog reaches pad $0$ it will be eaten by a patiently waiting snake. If the frog reaches pad $10$ it will exit the pond, never to return. What is the probability that the frog will escape being eaten by the snake?
$ \textbf {(A) } \frac{32}{79} \qquad \textbf {(B) } \frac{161}{384} \qquad \textbf {(C) } \frac{63}{146} \qquad \textbf {(D) } \frac{7}{16} \qquad \textbf {(E) } \frac{1}{2} $
2019 Belarus Team Selection Test, 8.1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2005 South East Mathematical Olympiad, 6
Let $P(A)$ be the arithmetic-means of all elements of set $A = \{ a_1, a_2, \ldots, a_n \}$, namely $P(A) = \frac{1}{n} \sum^{n}_{i=1}a_i$. We denote $B$ "balanced subset" of $A$, if $B$ is a non-empty subset of $A$ and $P(B) = P(A)$. Let set $M = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$.
Find the number of all "balanced subset" of $M$.
2004 Korea - Final Round, 1
An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?
1998 National Olympiad First Round, 36
$ ABCD$ is a $ 4\times 4$ square. $ E$ is the midpoint of $ \left[AB\right]$. $ M$ is an arbitrary point on $ \left[AC\right]$. How many different points $ M$ are there such that $ \left|EM\right|\plus{}\left|MB\right|$ is an integer?
$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 6$
2018 Rioplatense Mathematical Olympiad, Level 3, 2
Let $P$ be a point outside a circumference $\Gamma$, and let $PA$ be one of the tangents from $P$ to $\Gamma$. Line $l$ passes through $P$ and intersects $\Gamma$ at $B$ and $C$, with $B$ between $P$ and $C$. Let $D$ be the symmetric of $B$ with respect to $P$. Let $\omega_1$ and $\omega_2$ be the circles circumscribed to the triangles $DAC$ and $PAB$ respectively. $\omega_1$ and $\omega _2$ intersect at $E \neq A$. Line $EB$ cuts back to $\omega _1 $ in $F$. Prove that $CF = AB$.
2010 Purple Comet Problems, 23
A disk with radius $10$ and a disk with radius $8$ are drawn so that the distance between their centers is $3$. Two congruent small circles lie in the intersection of the two disks so that they are tangent to each other and to each of the larger circles as shown. The radii of the smaller circles are both $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(1));
draw(circle(origin,10)^^circle((3,0),8)^^circle((5,15/4),15/4)^^circle((5,-15/4),15/4));
[/asy]
2012 Tuymaada Olympiad, 1
Tanya and Serezha take turns putting chips in empty squares of a chessboard. Tanya starts with a chip in an arbitrary square. At every next move, Serezha must put a chip in the column where Tanya put her last chip, while Tanya must put a chip in the row where Serezha put his last chip. The player who cannot make a move loses. Which of the players has a winning strategy?
[i]Proposed by A. Golovanov[/i]
2008 AMC 12/AHSME, 22
A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8)+fontsize(8));
draw(Circle((0,0),4));
path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle;
draw(mat);
draw(rotate(60)*mat);
draw(rotate(120)*mat);
draw(rotate(180)*mat);
draw(rotate(240)*mat);
draw(rotate(300)*mat);
label("$x$",(-2.687,0),E);
label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$
2014 International Zhautykov Olympiad, 2
Let $U=\{1, 2,\ldots, 2014\}$. For positive integers $a$, $b$, $c$ we denote by $f(a, b, c)$ the number of ordered 6-tuples of sets $(X_1,X_2,X_3,Y_1,Y_2,Y_3)$ satisfying the following conditions:
(i) $Y_1 \subseteq X_1 \subseteq U$ and $|X_1|=a$;
(ii) $Y_2 \subseteq X_2 \subseteq U\setminus Y_1$ and $|X_2|=b$;
(iii) $Y_3 \subseteq X_3 \subseteq U\setminus (Y_1\cup Y_2)$ and $|X_3|=c$.
Prove that $f(a,b,c)$ does not change when $a$, $b$, $c$ are rearranged.
[i]Proposed by Damir A. Yeliussizov, Kazakhstan[/i]
2011 Turkey MO (2nd round), 1
$n\geq2$ and $E=\left \{ 1,2,...,n \right \}. A_1,A_2,...,A_k$ are subsets of $E$, such that for all $1\leq{i}<{j}\leq{k}$ Exactly one of $A_i\cap{A_j},A_i'\cap{A_j},A_i\cap{A_j'},A_i'\cap{A_j'}$ is empty set. What is the maximum possible $k$?
1993 Hungary-Israel Binational, 3
Distinct points $A, B , C, D, E$ are given in this order on a semicircle with radius $1$. Prove that
\[AB^{2}+BC^{2}+CD^{2}+DE^{2}+AB \cdot BC \cdot CD+BC \cdot CD \cdot DE < 4.\]
2021 Latvia Baltic Way TST, P10
Circle $\omega$ with centre $M$ and diameter $XY$ is given. Point $A$ is chosen on $\omega$ so that $AX<AY$. Points $B, C$ are chosen on segments $XM, YM$, respectively, in a way that $BM=CM$. A parallel line to $AB$ is constructed through $C$; the line intersects $\omega$ at $P$ so that $P$ lies on the smaller arc $\widehat{AY}$. Similarly, a parallel line to $AC$ is constructed through $B$; the line intersects $\omega$ at $Q$ so that $Q$ lies on the smaller arc $\widehat{XA}$. Lines $PQ$ and $XY$ intersect at $S$. Prove that $AS$ is tangent to $\omega$.
2012 AMC 12/AHSME, 22
A bug travels from $A$ to $B$ along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there?
[asy]
size(10cm);
draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509));
draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509));
draw((3.0,-1.7320508075688772)--(4.0,0.0)--(6.0,0.0)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,3.4641016151377544)--(12.0,3.464101615137755)--(13.0,5.196152422706632)--(15.0,5.196152422706632));
draw((6.0,-3.4641016151377544)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,0.0)--(12.0,0.0)--(13.0,1.7320508075688772)--(15.0,1.7320508075688776)--(16.0,3.464101615137755)--(18.0,3.4641016151377544));
draw((9.0,-5.196152422706632)--(10.0,-3.464101615137755)--(12.0,-3.464101615137755)--(13.0,-1.7320508075688776)--(15.0,-1.7320508075688776)--(16.0,0)--(18.0,0.0)--(19.0,1.7320508075688772)--(21.0,1.7320508075688767));
draw((12.0,-6.928203230275509)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544)--(19.0,-1.7320508075688772)--(21.0,-1.7320508075688767)--(22.0,0));
draw((0.0,-0.0)--(1.0,-1.7320508075688772)--(3.0,-1.7320508075688772)--(4.0,-3.4641016151377544)--(6.0,-3.4641016151377544)--(7.0,-5.196152422706632)--(9.0,-5.196152422706632)--(10.0,-6.928203230275509)--(12.0,-6.928203230275509));
draw((3.0,1.7320508075688772)--(4.0,-0.0)--(6.0,-0.0)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,-3.4641016151377544)--(12.0,-3.464101615137755)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632));
draw((6.0,3.4641016151377544)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,-0.0)--(12.0,-0.0)--(13.0,-1.7320508075688772)--(15.0,-1.7320508075688776)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544));
draw((9.0,5.1961524)--(10.0,3.464101)--(12.0,3.46410)--(13.0,1.73205)--(15.0,1.732050)--(16.0,0)--(18.0,-0.0)--(19.0,-1.7320)--(21.0,-1.73205080));
draw((12.0,6.928203)--(13.0,5.1961524)--(15.0,5.1961524)--(16.0,3.464101615)--(18.0,3.4641016)--(19.0,1.7320508)--(21.0,1.732050)--(22.0,0));
dot((0,0));
dot((22,0));
label("$A$",(0,0),WNW);
label("$B$",(22,0),E);
filldraw((2.0,1.7320508075688772)--(1.6,1.2320508075688772)--(1.75,1.7320508075688772)--(1.6,2.232050807568877)--cycle,black);
filldraw((5.0,3.4641016151377544)--(4.6,2.9641016151377544)--(4.75,3.4641016151377544)--(4.6,3.9641016151377544)--cycle,black);
filldraw((8.0,5.196152422706632)--(7.6,4.696152422706632)--(7.75,5.196152422706632)--(7.6,5.696152422706632)--cycle,black);
filldraw((11.0,6.928203230275509)--(10.6,6.428203230275509)--(10.75,6.928203230275509)--(10.6,7.428203230275509)--cycle,black);
filldraw((4.6,0.0)--(5.0,-0.5)--(4.85,0.0)--(5.0,0.5)--cycle,white);
filldraw((8.0,1.732050)--(7.6,1.2320)--(7.75,1.73205)--(7.6,2.2320)--cycle,black);
filldraw((11.0,3.4641016)--(10.6,2.9641016)--(10.75,3.46410161)--(10.6,3.964101)--cycle,black);
filldraw((14.0,5.196152422706632)--(13.6,4.696152422706632)--(13.75,5.196152422706632)--(13.6,5.696152422706632)--cycle,black);
filldraw((8.0,-1.732050)--(7.6,-2.232050)--(7.75,-1.7320508)--(7.6,-1.2320)--cycle,black);
filldraw((10.6,0.0)--(11,-0.5)--(10.85,0.0)--(11,0.5)--cycle,white);
filldraw((14.0,1.7320508075688772)--(13.6,1.2320508075688772)--(13.75,1.7320508075688772)--(13.6,2.232050807568877)--cycle,black);
filldraw((17.0,3.464101615137755)--(16.6,2.964101615137755)--(16.75,3.464101615137755)--(16.6,3.964101615137755)--cycle,black);
filldraw((11.0,-3.464101615137755)--(10.6,-3.964101615137755)--(10.75,-3.464101615137755)--(10.6,-2.964101615137755)--cycle,black);
filldraw((14.0,-1.7320508075688776)--(13.6,-2.2320508075688776)--(13.75,-1.7320508075688776)--(13.6,-1.2320508075688776)--cycle,black);
filldraw((16.6,0)--(17,-0.5)--(16.85,0)--(17,0.5)--cycle,white);
filldraw((20.0,1.7320508075688772)--(19.6,1.2320508075688772)--(19.75,1.7320508075688772)--(19.6,2.232050807568877)--cycle,black);
filldraw((14.0,-5.196152422706632)--(13.6,-5.696152422706632)--(13.75,-5.196152422706632)--(13.6,-4.696152422706632)--cycle,black);
filldraw((17.0,-3.464101615137755)--(16.6,-3.964101615137755)--(16.75,-3.464101615137755)--(16.6,-2.964101615137755)--cycle,black);
filldraw((20.0,-1.7320508075688772)--(19.6,-2.232050807568877)--(19.75,-1.7320508075688772)--(19.6,-1.2320508075688772)--cycle,black);
filldraw((2.0,-1.7320508075688772)--(1.6,-1.2320508075688772)--(1.75,-1.7320508075688772)--(1.6,-2.232050807568877)--cycle,black);
filldraw((5.0,-3.4641016)--(4.6,-2.964101)--(4.75,-3.4641)--(4.6,-3.9641016)--cycle,black);
filldraw((8.0,-5.1961524)--(7.6,-4.6961524)--(7.75,-5.19615242)--(7.6,-5.696152422)--cycle,black);
filldraw((11.0,-6.9282032)--(10.6,-6.4282032)--(10.75,-6.928203)--(10.6,-7.428203)--cycle,black);[/asy]
$ \textbf{(A)}\ 2112\qquad\textbf{(B)}\ 2304\qquad\textbf{(C)}\ 2368\qquad\textbf{(D)}\ 2384\qquad\textbf{(E)}\ 2400 $
2009 Princeton University Math Competition, 5
A polygon is called concave if it has at least one angle strictly greater than $180^{\circ}$. What is the maximum number of symmetries that an 11-sided concave polygon can have? (A [i]symmetry[/i] of a polygon is a way to rotate or reflect the plane that leaves the polygon unchanged.)
2012 All-Russian Olympiad, 2
The points $A_1,B_1,C_1$ lie on the sides $BC,CA$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $O_A,O_B$ and $O_C$ be the circumcentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the incentre of triangle $O_AO_BO_C$ is the incentre of triangle $ABC$ too.
2015 Peru IMO TST, 14
Let $ n$ be a positive integer and let $ a_1,a_2,\ldots,a_n$ be positive real numbers such that:
\[ \sum^n_{i \equal{} 1} a_i \equal{} \sum^n_{i \equal{} 1} \frac {1}{a_i^2}.
\]
Prove that for every $ i \equal{} 1,2,\ldots,n$ we can find $ i$ numbers with sum at least $ i$.
1935 Eotvos Mathematical Competition, 2
Prove that a finite point set cannot have more than one center of symmetry.
2014 Iran Team Selection Test, 6
The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$.
let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$.
prove that $\widehat{BAD}=\widehat{CAX}$
Today's calculation of integrals, 768
Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying
\[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\]
in $xyz$-space.
(1) Find $V(r)$.
(2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$
(3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$