Found problems: 701
2004 Postal Coaching, 7
Let $ABCD$ be a square, and $C$ the circle whose diameter is $AB.$ Let $Q$ be an arbitrary point on the segment $CD.$ We know that $QA$ meets $C$ on $E$ and $QB$ meets it on $F.$ Also $CF$ and $DE$ intersect in $M.$ show that $M$ belongs to $C.$
1992 Putnam, A6
Four points are chosen at random on the surface of a sphere. What is the probability that the center of the sphere lies inside the tetrahedron whose vertices are at the four points?
2003 USAMO, 6
At the vertices of a regular hexagon are written six nonnegative integers whose sum is $2003^{2003}$. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.
2009 China National Olympiad, 1
Given an integer $ n > 3.$ Let $ a_{1},a_{2},\cdots,a_{n}$ be real numbers satisfying $ min |a_{i} \minus{} a_{j}| \equal{} 1, 1\le i\le j\le n.$ Find the minimum value of $ \sum_{k \equal{} 1}^n|a_{k}|^3.$
2003 All-Russian Olympiad, 4
Find the greatest natural number $N$ such that, for any arrangement of the numbers $1, 2, \ldots, 400$ in a chessboard $20 \times 20$, there exist two numbers in the same row or column, which differ by at least $N.$
2013 ELMO Shortlist, 6
A $4\times4$ grid has its 16 cells colored arbitrarily in three colors. A [i]swap[/i] is an exchange between the colors of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry, regardless of the grid's initial coloring.
[i]Proposed by Matthew Babbitt[/i]
2008 AMC 12/AHSME, 25
Let $ ABCD$ be a trapezoid with $ AB\parallel{}CD$, $ AB\equal{}11$, $ BC\equal{}5$, $ CD\equal{}19$, and $ DA\equal{}7$. Bisectors of $ \angle A$ and $ \angle D$ meet at $ P$, and bisectors of $ \angle B$ and $ \angle C$ meet at $ Q$. What is the area of hexagon $ ABQCDP$?
$ \textbf{(A)}\ 28\sqrt{3}\qquad
\textbf{(B)}\ 30\sqrt{3}\qquad
\textbf{(C)}\ 32\sqrt{3}\qquad
\textbf{(D)}\ 35\sqrt{3}\qquad
\textbf{(E)}\ 36\sqrt{3}$
2019 Brazil Team Selection Test, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2013 NIMO Problems, 6
Tom has a scientific calculator. Unfortunately, all keys are broken except for one row: 1, 2, 3, + and -.
Tom presses a sequence of $5$ random keystrokes; at each stroke, each key is equally likely to be pressed. The calculator then evaluates the entire expression, yielding a result of $E$. Find the expected value of $E$.
(Note: Negative numbers are permitted, so 13-22 gives $E = -9$. Any excess operators are parsed as signs, so -2-+3 gives $E=-5$ and -+-31 gives $E = 31$. Trailing operators are discarded, so 2++-+ gives $E=2$. A string consisting only of operators, such as -++-+, gives $E=0$.)
[i]Proposed by Lewis Chen[/i]
2017 Vietnamese Southern Summer School contest, Problem 3
Let $\omega$ be a circle with center $O$ and a non-diameter chord $BC$ of $\omega$. A point $A$ varies on $\omega$ such that $\angle BAC<90^{\circ}$. Let $S$ be the reflection of $O$ through $BC$. Let $T$ be a point on $OS$ such that the bisector of $\angle BAC$ also bisects $\angle TAS$.
1. Prove that $TB=TC=TO$.
2. $TB, TC$ cut $\omega$ the second times at points $E, F$, respectively. $AE, AF$ cut $BC$ at $M, N$, respectively. Let $SM$ intersects the tangent line at $C$ of $\omega$ at $X$, $SN$ intersects the tangent line at $B$ of $\omega$ at $Y$. Prove that the bisector of $\angle BAC$ also bisects $\angle XAY$.
2014 Singapore MO Open, 1
The quadrilateral ABCD is inscribed in a circle which has diameter BD. Points A’ and B’ are symmetric to A and B with respect to the line BD and AC respectively. If the lines A’C, BD intersect at P and AC, B’D intersect at Q, prove that PQ is perpendicular to AC.
2008 USAMO, 3
Let $n$ be a positive integer. Denote by $S_n$ the set of points $(x, y)$ with integer coordinates such that \[ \left\lvert x\right\rvert + \left\lvert y + \frac{1}{2} \right\rvert < n. \] A path is a sequence of distinct points $(x_1 , y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in $S_n$ such that, for $i = 2, \ldots, \ell$, the distance between $(x_i , y_i)$ and $(x_{i-1} , y_{i-1} )$ is $1$ (in other words, the points $(x_i, y_i)$ and $(x_{i-1} , y_{i-1} )$ are neighbors in the lattice of points with integer coordinates). Prove that the points in $S_n$ cannot be partitioned into fewer than $n$ paths (a partition of $S_n$ into $m$ paths is a set $\mathcal{P}$ of $m$ nonempty paths such that each point in $S_n$ appears in exactly one of the $m$ paths in $\mathcal{P}$).
2012 Online Math Open Problems, 25
Suppose 2012 reals are selected independently and at random from the unit interval $[0,1]$, and then written in nondecreasing order as $x_1\le x_2\le\cdots\le x_{2012}$. If the probability that $x_{i+1} - x_i \le \frac{1}{2011}$ for $i=1,2,\ldots,2011$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m,n$, find the remainder when $m+n$ is divided by 1000.
[i]Victor Wang.[/i]
2012 Vietnam Team Selection Test, 3
Let $p\ge 17$ be a prime. Prove that $t=3$ is the largest positive integer which satisfies the following condition:
For any integers $a,b,c,d$ such that $abc$ is not divisible by $p$ and $(a+b+c)$ is divisible by $p$, there exists integers $x,y,z$ belonging to the set $\{0,1,2,\ldots , \left\lfloor \frac{p}{t} \right\rfloor - 1\}$ such that $ax+by+cz+d$ is divisible by $p$.
2009 AMC 10, 5
What is the sum of the digits of the square of $ 111,111,111$?
$ \textbf{(A)}\ 18 \qquad
\textbf{(B)}\ 27 \qquad
\textbf{(C)}\ 45 \qquad
\textbf{(D)}\ 63 \qquad
\textbf{(E)}\ 81$
2010 AMC 12/AHSME, 18
A frog makes $ 3$ jumps, each exactly $ 1$ meter long. The directions of the jumps are chosen independently and at random. What is the probability the frog's final position is no more than $ 1$ meter from its starting position?
$ \textbf{(A)}\ \frac {1}{6} \qquad \textbf{(B)}\ \frac {1}{5} \qquad \textbf{(C)}\ \frac {1}{4} \qquad \textbf{(D)}\ \frac {1}{3} \qquad \textbf{(E)}\ \frac {1}{2}$
2009 Today's Calculation Of Integral, 401
For real number $ a$ with $ |a|>1$, evaluate $ \int_0^{2\pi} \frac{d\theta}{(a\plus{}\cos \theta)^2}$.
2001 Bulgaria National Olympiad, 3
Given a permutation $(a_{1}, a_{1},...,a_{n})$ of the numbers $1, 2,...,n$ one may interchange any two consecutive "blocks" - that is, one may transform
($a_{1}, a_{2},...,a_{i}$,$\underbrace {a_{i+1},... a_{i+p},}_{A} $ $ \underbrace{a_{i+p+1},...,a_{i+q},}_{B}...,a_{n}) $
into
$ (a_{1}, a_{2},...,a_{i},$ $ \underbrace {a_{i+p+1},...,a_{i+q},}_{B} $ $ \underbrace {a_{i+1},... a_{i+p}}_{A}$$,...,a_{n}) $
by interchanging the "blocks" $A$ and $B$. Find the least number of such changes which are needed to transform $(n, n-1,...,1)$ into $(1,2,...,n)$
2013 Bosnia Herzegovina Team Selection Test, 4
Find all primes $p,q$ such that $p$ divides $30q-1$ and $q$ divides $30p-1$.
1996 Vietnam National Olympiad, 2
Given a trihedral angle Sxyz. A plane (P) not through S cuts Sx,Sy,Sz respectively at A,B,C. On the plane (P), outside triangle ABC, construct triangles DAB,EBC,FCA which are confruent to the triangles SAB,SBC,SCA respectively. Let (T) be the sphere lying inside Sxyz, but not inside the tetrahedron SABC, toucheing the planes containing the faces of SABC. Prove that (T) touches the plane (P) at the circumcenter of triangle DEF.
2013 Putnam, 6
Let $n\ge 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice playing first. The playing area consists of $n$ spaces, arranged in a line. Initially all spaces are empty. At each turn, a player either
• places a stone in an empty space, or
• removes a stone from a nonempty space $s,$ places a stone in the nearest empty space to the left of $s$ (if such a space exists), and places a stone in the nearest empty space to the right of $s$ (if such a space exists).
Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?
2015 International Zhautykov Olympiad, 2
Inside the triangle $ ABC $ a point $ M $ is given. The line $ BM $ meets the side $ AC $ at $ N $. The point $ K $ is symmetrical to $ M $ with respect to $ AC $. The line $ BK $ meets $ AC $ at $ P $. If $ \angle AMP = \angle CMN $, prove that $ \angle ABP=\angle CBN $.
2005 MOP Homework, 1
A circle with center $O$ is tangent to the sides of the angle with the vertex $A$ at the points B and C. Let M be a point on the larger of the two arcs $BC$ of this circle (different from $B$ and $C$) such that $M$ does not lie on the line $AO$. Lines $BM$ and $CM$ intersect the line $AO$ at the points $P$ and $Q$ respectively. Let $K$ be the foot of the perpendicular drawn from $P$ to $AC$ and $L$ be the foot of the perpendicular drawn from $Q$ to $AB$. Prove that the lines $OM$ and $KL$ are perpendicular.
2005 Cono Sur Olympiad, 1
Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.
2017 Vietnam National Olympiad, 4
Given an integer $n>1$ and a $n\times n$ grid $ABCD$ containing $n^2$ unit squares, each unit square is colored by one of three colors: Black, white and gray. A coloring is called [i]symmetry[/i] if each unit square has center on diagonal $AC$ is colored by gray and every couple of unit squares which are symmetry by $AC$ should be both colred by black or white. In each gray square, they label a number $0$, in a white square, they will label a positive integer and in a black square, a negative integer. A label will be called $k$-[i]balance[/i] (with $k\in\mathbb{Z}^+$) if it satisfies the following requirements:
i) Each pair of unit squares which are symmetry by $AC$ are labelled with the same integer from the closed interval $[-k,k]$
ii) If a row and a column intersectes at a square that is colored by black, then the set of positive integers on that row and the set of positive integers on that column are distinct.If a row and a column intersectes at a square that is colored by white, then the set of negative integers on that row and the set of negative integers on that column are distinct.
a) For $n=5$, find the minimum value of $k$ such that there is a $k$-balance label for the following grid
[asy]
size(4cm);
pair o = (0,0); pair y = (0,5); pair z = (5,5); pair t = (5,0); dot("$A$", y, dir(180)); dot("$B$", z); dot("$C$", t); dot("$D$", o, dir(180));
fill((0,5)--(1,5)--(1,4)--(0,4)--cycle,gray);
fill((1,4)--(2,4)--(2,3)--(1,3)--cycle,gray);
fill((2,3)--(3,3)--(3,2)--(2,2)--cycle,gray);
fill((3,2)--(4,2)--(4,1)--(3,1)--cycle,gray);
fill((4,1)--(5,1)--(5,0)--(4,0)--cycle,gray);
fill((0,3)--(1,3)--(1,1)--(0,1)--cycle,black);
fill((2,5)--(4,5)--(4,4)--(2,4)--cycle,black);
fill((2,1)--(3,1)--(3,0)--(2,0)--cycle,black);
fill((2,1)--(3,1)--(3,0)--(2,0)--cycle,black);
fill((4,3)--(5,3)--(5,2)--(4,2)--cycle,black);
for (int i=0; i<=5; ++i) { draw((0,i)--(5,i)^^(i,0)--(i,5)); }
[/asy]
b) Let $n=2017$. Find the least value of $k$ such that there is always a $k$-balance label for a symmetry coloring.