This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

Swiss NMO - geometry, 2017.5

Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.

1995 ITAMO, 5

Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.

2007 Greece JBMO TST, 3

Let $ABCD$ be a rectangle with $AB=a >CD =b$. Given circles $(K_1,r_1) , (K_2,r_2)$ with $r_1<r_2$ tangent externally at point $K$ and also tangent to the sides of the rectangle, circle $(K_1,r_1)$ tangent to both $AD$ and $AB$, circle $(K_2,r_2)$ tangent to both $AB$ and $BC$. Let also the internal common tangent of those circles pass through point $D$. (i) Express sidelengths $a$ and $b$ in terms of $r_1$ and $r_2$. (ii) Calculate the ratios $\frac{r_1}{r_2}$ and $\frac{a}{b}$ . (iii) Find the length of $DK$ in terms of $r_1$ and $r_2$.

2015 Oral Moscow Geometry Olympiad, 4

In triangle $ABC$, point $M$ is the midpoint of $BC, P$ is the intersection point of the tangents at points $B$ and $C$ of the circumscribed circle, $N$ is the midpoint of the segment $MP$. The segment $AN$ intersects the circumscribed circle at point $Q$. Prove that $\angle PMQ = \angle MAQ$.

2001 Croatia Team Selection Test, 2

Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.

2018 Junior Regional Olympiad - FBH, 4

It is given $4$ circles in a plane and every one of them touches the other three as shown: [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC82L2FkYWQ5NThhMWRiMjAwZjYxOWFhYmE1M2YzZDU5YWI2N2IyYzk2LnBuZw==&rn=a3J1Z292aS5wbmc=[/img] Biggest circle has radius $2$, and every one of the medium has $1$. Find out the radius of fourth circle.

2015 Indonesia MO Shortlist, G5

Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side $AB$ and is tangent to the sides $AC$ and $BC$. The circles $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.

KoMaL A Problems 2019/2020, A. 779

Two circles are given in the plane, $\Omega$ and inside it $\omega$. The center of $\omega$ is $I$. $P$ is a point moving on $\Omega$. The second intersection of the tangents from $P$ to $\omega$ and circle $\Omega$ are $Q$ and $R.$ The second intersection of circle $IQR$ and lines $PI$, $PQ$ and $PR$ are $J$, $S$ and $T,$ respectively. The reflection of point $J$ across line $ST$ is $K.$ Prove that lines $PK$ are concurrent.

1945 Moscow Mathematical Olympiad, 095

Two circles are tangent externally at one point. Common external tangents are drawn to them and the tangent points are connected. Prove that the sum of the lengths of the opposite sides of the quadrilateral obtained are equal.

2022 Greece JBMO TST, 2

Tags: geometry , tangent
Let $ABC$ be an acute triangle with $AB<AC < BC$, inscirbed in circle $\Gamma_1$, with center $O$. Circle $\Gamma_2$, with center point $A$ and radius $AC$ intersects $BC$ at point $D$ and the circle $\Gamma_1$ at point $E$. Line $AD$ intersects circle $\Gamma_1$ at point $F$. The circumscribed circle $\Gamma_3$ of triangle $DEF$, intersects $BC$ at point $G$. Prove that: a) Point $B$ is the center of circle $\Gamma_3$ b) Circumscribed circle of triangle $CEG$ is tangent to $AC$.

Ukrainian TYM Qualifying - geometry, 2010.12

On the plane is drawn a triangle $ABC$ and a circle $\omega$ passing through the vertex $C$, the midpoints of the sides $AC$ and $BC$ and the point of intersection of the medians of the triangle $ABC$. The point $K$ lies on the circle $\omega$ such that $\angle AKB=90^o$. Using only with a ruler, draw a tangent to the circle $\omega$ at point $K$.

2015 Irish Math Olympiad, 4

Two circles $C_1$ and $C_2$, with centres at $D$ and $E$ respectively, touch at $B$. The circle having $DE$ as diameter intersects the circle $C_1$ at $H$ and the circle $C_2$ at $K$. The points $H$ and $K$ both lie on the same side of the line $DE$. $HK$ extended in both directions meets the circle $C_1$ at $L$ and meets the circle $C_2$ at $M$. Prove that (a) $|LH| = |KM|$ (b) the line through $B$ perpendicular to $DE$ bisects $HK$.

2022 Oral Moscow Geometry Olympiad, 5

Circle $\omega$ is tangent to the interior of the circle $\Omega$ at the point C. Chord $AB$ of circle $\Omega$ is tangent to $\omega$. Chords $CF$ and $BG$ of circle $\Omega$ intersect at point $E$ lying on $\omega$. Prove that the circumcircle of triangle $CGE$ is tangent to straight line $AF$. (I. Kukharchuk)

1990 All Soviet Union Mathematical Olympiad, 527

Two unequal circles intersect at $X$ and $Y$. Their common tangents intersect at $Z$. One of the tangents touches the circles at $P$ and $Q$. Show that $ZX$ is tangent to the circumcircle of $PXQ$.

2014 Cuba MO, 6

Let $ABC$ be an isosceles triangle with $AB = AC$. Points $D$, $E$ and $F$ are on sides $BC$, $CA $ and $AB$ respectively, such that $\angle FDE =\angle ABC$ and $FE$ is not parallel to $BC$. Prove that $BC$ is tangent to the circumcircle of the triangle $DEF$, if and only if, $D$ is the midpoint of $BC$.

2016 Saudi Arabia BMO TST, 2

Let $A$ be a point outside the circle $\omega$. Two points $B, C$ lie on $\omega$ such that $AB, AC$ are tangent to $\omega$. Let $D$ be any point on $\omega$ ($D$ is neither $B$ nor $C$) and $M$ the foot of perpendicular from $B$ to $CD$. The line through $D$ and the midpoint of $BM$ meets $\omega$ again at $P$. Prove that $AP \perp CP$

2021 Austrian MO Regional Competition, 2

Let $ABC$ be an isosceles triangle with $AC = BC$ and circumcircle $k$. The point $D$ lies on the shorter arc of $k$ over the chord $BC$ and is different from $B$ and $C$. Let $E$ denote the intersection of $CD$ and $AB$. Prove that the line through $B$ and $C$ is a tangent of the circumcircle of the triangle $BDE$. (Karl Czakler)

2014 Indonesia MO Shortlist, G6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2021 Korea Junior Math Olympiad, 3

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\Omega$ and let diagonals $AC$ and $BD$ intersect at $X$. Suppose that $AEFB$ is inscribed in a circumcircle of triangle $ABX$ such that $EF$ and $AB$ are parallel. $FX$ meets the circumcircle of triangle $CDX$ again at $G$. Let $EX$ meets $AB$ at $P$, and $XG$ meets $CD$ at $Q$. Denote by $S$ the intersection of the perpendicular bisector of $\overline{EG}$ and $\Omega$ such that $S$ is closer to $A$ than $B$. Prove that line through $S$ parallel to $PQ$ is tangent to $\Omega$.

2022 European Mathematical Cup, 4

Five points $A$, $B$, $C$, $D$ and $E$ lie on a circle $\tau$ clockwise in that order such that $AB \parallel CE$ and $\angle ABC > 90^{\circ}$. Let $k$ be a circle tangent to $AD$, $CE$ and $\tau$ such that $k$ and $\tau$ touch on the arc $\widehat{DE}$ not containing $A$, $B$ and $C$. Let $F \neq A$ be the intersection of $\tau$ and the tangent line to $k$ passing through $A$ different from $AD$. Prove that there exists a circle tangent to $BD$, $BF$, $CE$ and $\tau$.

2015 Turkey Team Selection Test, 4

Let $ABC$ be a triangle such that $|AB|=|AC|$ and let $D,E$ be points on the minor arcs $\overarc{AB}$ and $\overarc{AC}$ respectively. The lines $AD$ and $BC$ intersect at $F$ and the line $AE$ intersects the circumcircle of $\triangle FDE$ a second time at $G$. Prove that the line $AC$ is tangent to the circumcircle of $\triangle ECG$.

2023 OMpD, 4

Let $ABC$ be a scalene acute triangle with circumcenter $O$. Let $K$ be a point on the side $\overline{BC}$. Define $M$ as the second intersection of $\overleftrightarrow{OK}$ with the circumcircle of $BOC$. Let $L$ be the reflection of $K$ by $\overleftrightarrow{AC}$. Show that the circumcircles of the triangles $LCM$ and $ABC$ are tangent if, and only if, $\overline{AK} \perp \overline{BC}$.

2011 Ukraine Team Selection Test, 9

Inside the inscribed quadrilateral $ ABCD $, a point $ P $ is marked such that $ \angle PBC = \angle PDA $, $ \angle PCB = \angle PAD $. Prove that there exists a circle that touches the straight lines $ AB $ and $ CD $, as well as the circles circumscribed by the triangles $ ABP $ and $ CDP $.

2005 Bosnia and Herzegovina Team Selection Test, 4

On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.

2025 Israel TST, P2

Given a cyclic quadrilateral $ABCD$, define $E$ as $AD \cap BC$ and $F$ as $AB \cap CD$. Let $\Omega_A$ be the circle passing through $A, D$ and tangent to $AB$, and let its center be $O_A$. Let $\Gamma_B$ be the circle passing through $B, C$ and tangent to $AB$, and let its center be $O_B$. Let $\Gamma_C$ be the circle passing through $B, C$ and tangent to $CD$, and let its center be $O_C$. Let $\Omega_D$ be the circle passing through $A, D$ and tangent to $CD$, and let its center be $O_D$. Prove that $O_AO_BO_CO_D$ is cyclic, and prove that it's center lies on $EF$.