Found problems: 280
Russian TST 2018, P2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
1997 Israel National Olympiad, 8
Two equal circles are internally tangent to a larger circle at $A$ and $B$. Let $M$ be a point on the larger circle, and let lines $MA$ and $MB$ intersect the corresponding smaller circles at $A'$ and $B'$. Prove that $A'B'$ is parallel to $AB$.
2017 IMO Shortlist, G4
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
1989 Tournament Of Towns, (214) 2
It is known that a circle can be inscribed in a trapezium $ABCD$.
Prove that the two circles, constructed on its oblique sides as diameters, touch each other.
(D. Fomin, Leningrad)
2018 Germany Team Selection Test, 3
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
1991 Tournament Of Towns, (311) 1
Two circles with centres $A$ and $B$ lie inside an angle. They touch each other and both sides of the angle. Prove that the circle with the diameter $AB$ touches both sides of the angle.
(V. Prasolov)
1998 Denmark MO - Mohr Contest, 1
In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure.
[img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]
2008 Balkan MO Shortlist, G5
The circle $k_a$ touches the extensions of sides $AB$ and $BC$, as well as the circumscribed circle of the triangle $ABC$ (from the outside). We denote the intersection of $k_a$ with the circumscribed circle of the triangle $ABC$ by $A'$. Analogously, we define points $B'$ and $C'$. Prove that the lines $AA',BB'$ and $CC'$ intersect in one point.
2020 China Team Selection Test, 2
Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.
2011 Indonesia TST, 2
On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions:
$\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$.
$\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$.
$\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally.
$\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$.
Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.
1997 Estonia National Olympiad, 5
Six small circles of radius $1$ are drawn so that they are all tangent to a larger circle, and two of them are tangent to sides $BC$ and $AD$ of a rectangle $ABCD$ at their midpoints $K$ and $L$. Each of the remaining four small circles is tangent to two sides of the rectangle. The large circle is tangent to sides $AB$ and $CD$ of the rectangle and cuts the other two sides. Find the radius of the large circle.
[img]https://cdn.artofproblemsolving.com/attachments/b/4/a134da78d709fe7162c48d6b5c40bd1016c355.png[/img]
Estonia Open Senior - geometry, 2005.1.2
Two circles $c_1$ and $c_2$ with centres $O_1$ and $O_2$, respectively, are touching externally at $P$. On their common tangent at $P$, point $A$ is chosen, rays drawn from which touch the circles $c_1$ and $c_2$ at points $P_1$ and $P_2$ both different from $P$. It is known that $\angle P_1AP_2 = 120^o$ and angles $P_1AP$ and $P_2AP$ are both acute. Rays $AP_1$ and $AP_2$ intersect line $O_1O_2$ at points $G_1$ and $G_2$, respectively. The second intersection between ray $AO_1$ and $c_1$ is $H_1$, the second intersection between ray $AO_2$ and $c_2$ is $H_2$. Lines $G_1H_1$ and $AP$ intersect at $K$. Prove that if $G_1K$ is a tangent to circle $c_1$, then line $G_2A$ is tangent to circle $c_2$ with tangency point $H_2$.
2022 Turkey Team Selection Test, 4
We have three circles $w_1$, $w_2$ and $\Gamma$ at the same side of line $l$ such that $w_1$ and $w_2$ are tangent to $l$ at $K$ and $L$ and to $\Gamma$ at $M$ and $N$, respectively. We know that $w_1$ and $w_2$ do not intersect and they are not in the same size. A circle passing through $K$ and $L$ intersect $\Gamma$ at $A$ and $B$. Let $R$ and $S$ be the reflections of $M$ and $N$ with respect to $l$. Prove that $A, B, R, S$ are concyclic.
2014 Swedish Mathematical Competition, 2
Three circles that touch each other externally have all their centers on one fourth circle with radius $R$. Show that the total area of the three circle disks is smaller than $4\pi R^2$.
XMO (China) 2-15 - geometry, 6.5
As shown in the figure, $\odot O$ is the circumcircle of $\vartriangle ABC$, $\odot J$ is inscribed in $\odot O$ and is tangent to $AB$, $AC$ at points $D$ and E respectively, line segment $FG$ and $\odot O$ are tangent to point $A$, and $AF =AG=AD$, the circumscribed circle of $\vartriangle AFB$ intersects $\odot J$ at point $S$. Prove that the circumscribed circle of $\vartriangle ASG$ is tangent to $\odot J$.
[img]https://cdn.artofproblemsolving.com/attachments/a/a/62d44e071ea9903ebdd68b43943ba1d93b4138.png[/img]
2021 Sharygin Geometry Olympiad, 9.8
A quadrilateral $ABCD$ is circumscribed around a circle $\omega$ centered at $I$. Lines $AC$ and $BD$ meet at point $P$, lines $AB$ and $CD$ meet at point $£$, lines $AD$ and $BC$ meet at point $F$. Point $K$ on the circumcircle of triangle $E1F$ is such that $\angle IKP = 90^o$. The ray $PK$ meets $\omega$ at point $Q$. Prove that the circumcircle of triangle $EQF$ touches $\omega$.
2020 Sharygin Geometry Olympiad, 18
Bisectors $AA_1$, $BB_1$, and $CC_1$ of triangle $ABC$ meet at point $I$. The perpendicular bisector to $BB_1$ meets $AA_1,CC_1$ at points $A_0,C_0$ respectively. Prove that the circumcircles of triangles $A_0IC_0$ and $ABC$ touch.
2019 Ukraine Team Selection Test, 3
Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$.
(Bondarenko Mykhailo)
2018 Kyiv Mathematical Festival, 2
Let $M$ be the intersection point of the medians $AD$ and $BE$ of a right triangle $ABC$ ($\angle C=90^\circ$). It is known that the circumcircles of triangles $AEM$ and $CDM$ are tangent. Find the angle $\angle BMC.$
2017 Peru IMO TST, 9
Let $ABCD$ be a cyclie quadrilateral, $\omega$ be it's circumcircle and $M$ be the midpoint of the arc $AB$ of $\omega$ which does not contain the vertices $C$ and $D$. The line that passes through $M$ and the intersection point of segments $AC$ and $BD$, intersects again $\omega$ in $N$. Let $P$ and $Q$ be points in the $CD$ segment such that $\angle AQD = \angle DAP$ and $\angle BPC = \angle CBQ$. Prove that the circumcircle of $NPQ$ and $\omega$ are tangent to each other.
2015 Indonesia MO Shortlist, G8
$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.
1989 Greece Junior Math Olympiad, 3
Given a square $ABCD$ of side $a$, we consider the circle $\omega$, tangent to side $BC$ and to the two semicircles of diameters $AB$ and $CD$. Calculate the radius of circle $\omega$,
2005 Thailand Mathematical Olympiad, 4
Let $O_1$ be the center of a semicircle $\omega_1$ with diameter $AB$ and let $O_2$ be the center of a circle $\omega_2$ inscribed in $\omega_1$ and which is tangent to $AB$ at $O_1$. Let $O_3$ be a point on $AB$ that is the center of a semicircle $\omega_3$ which is tangent to both $\omega_1$ and $\omega_2$. Let $P$ be the intersection of the line through $O_3$ perpendicular to $AB$ and the line through $O_2$ parallel to $AB$. Show that $P$ is the center of a circle $\Gamma$ tangent to all of $\omega_1, \omega_2$ and $\omega_3$.
1995 ITAMO, 5
Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.
2015 Lusophon Mathematical Olympiad, 5
Two circles of radius $R$ and $r$, with $R>r$, are tangent to each other externally. The sides adjacent to the base of an isosceles triangle are common tangents to these circles. The base of the triangle is tangent to the circle of the greater radius. Determine the length of the base of the triangle.