This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

2007 Romania National Olympiad, 3

a) In a triangle $ MNP$, the lenghts of the sides are less than $ 2$. Prove that the lenght of the altitude corresponding to the side $ MN$ is less than $ \sqrt {4 \minus{} \frac {MN^2}{4}}$. b) In a tetrahedron $ ABCD$, at least $ 5$ edges have their lenghts less than $ 2$.Prove that the volume of the tetrahedron is less than $ 1$.

VMEO III 2006 Shortlist, G3

The tetrahedron $OABC$ has all angles at vertex $O$ equal to $60^o$. Prove that $$AB \cdot BC + BC \cdot CA + CA \cdot AB \ge OA^2 + OB^2 + OC^2$$

2011 Mediterranean Mathematics Olympiad, 3

A regular tetrahedron of height $h$ has a tetrahedron of height $xh$ cut off by a plane parallel to the base. When the remaining frustrum is placed on one of its slant faces on a horizontal plane, it is just on the point of falling over. (In other words, when the remaining frustrum is placed on one of its slant faces on a horizontal plane, the projection of the center of gravity G of the frustrum is a point of the minor base of this slant face.) Show that $x$ is a root of the equation $x^3 + x^2 + x = 2$.

2006 MOP Homework, 4

Let $ABCD$ be a tetrahedron and let $H_{a},H_{b},H_{c},H_{d}$ be the orthocenters of triangles $BCD,CDA,DAB,ABC$, respectively. Prove that lines $AH_{a},BH_{b},CH_{c}, DH_{d}$ are concurrent if and only if $AB^2 + CD^2 = AC^2 + BD^2 = AD^2 + BC^2$

2015 Israel National Olympiad, 5

Let $ABCD$ be a tetrahedron. Denote by $S_1$ the inscribed sphere inside it, which is tangent to all four faces. Denote by $S_2$ the outer escribed sphere outside $ABC$, tangent to face $ABC$ and to the planes containing faces $ABD,ACD,BCD$. Let $K$ be the tangency point of $S_1$ to the face $ABC$, and let $L$ be the tangency point of $S_2$ to the face $ABC$. Let $T$ be the foot of the perpendicular from $D$ to the face $ABC$. Prove that $L,T,K$ lie on one line.

1982 All Soviet Union Mathematical Olympiad, 348

The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.

2005 Taiwan TST Round 1, 2

Show that for any tetrahedron, the condition that opposite edges have the same length is equivalent to the condition that the segment drawn between the midpoints of any two opposite edges is perpendicular to the two edges.

1972 Vietnam National Olympiad, 4

Let $ABCD$ be a regular tetrahedron with side $a$. Take $E,E'$ on the edge $AB, F, F'$ on the edge $AC$ and $G,G'$ on the edge AD so that $AE =a/6,AE' = 5a/6,AF= a/4,AF'= 3a/4,AG = a/3,AG'= 2a/3$. Compute the volume of $EFGE'F'G'$ in term of $a$ and find the angles between the lines $AB,AC,AD$ and the plane $EFG$.

2018 German National Olympiad, 2

We are given a tetrahedron with two edges of length $a$ and the remaining four edges of length $b$ where $a$ and $b$ are positive real numbers. What is the range of possible values for the ratio $v=a/b$?

1972 IMO Longlists, 14

$(a)$ A plane $\pi$ passes through the vertex $O$ of the regular tetrahedron $OPQR$. We define $p, q, r$ to be the signed distances of $P,Q,R$ from $\pi$ measured along a directed normal to $\pi$. Prove that \[p^2 + q^2 + r^2 + (q - r)^2 + (r - p)^2 + (p - q)^2 = 2a^2,\] where $a$ is the length of an edge of a tetrahedron. $(b)$ Given four parallel planes not all of which are coincident, show that a regular tetrahedron exists with a vertex on each plane. [u]Note:[/u] Part $(b)$ is [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=49&t=60825&start=0]IMO 1972 Problem 6[/url]

1978 USAMO, 4

(a) Prove that if the six dihedral (i.e. angles between pairs of faces) of a given tetrahedron are congruent, then the tetrahedron is regular. (b) Is a tetrahedron necessarily regular if five dihedral angles are congruent?

2013 Polish MO Finals, 4

Given is a tetrahedron $ABCD$ in which $AB=CD$ and the sum of measures of the angles $BAD$ and $BCD$ equals $180$ degrees. Prove that the measure of the angle $BAD$ is larger than the measure of the angle $ADC$.

Ukrainian TYM Qualifying - geometry, IV.11

In the tetrahedron $ABCD$, the point $E$ is the projection of the point $D$ on the plane $(ABC)$. Prove that the following statements are equivalent: a) $C = E$ or $CE \parallel AB$ b) For each point M belonging to the segment $CD$, the following equation is satisfied $$S^2_{\vartriangle ABM}= \frac{CM^2}{CD^2}\cdot S^2_{\vartriangle ABD}+\left(1- \frac{CM^2}{CD^2} \right)S^2_{\vartriangle ABC}$$ where $S_{\vartriangle XYZ}$ means the area of ​​triangle $XYZ$.

2009 Princeton University Math Competition, 4

Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?

2017 International Zhautykov Olympiad, 3

Let $ABCD$ be the regular tetrahedron, and $M, N$ points in space. Prove that: $AM \cdot AN + BM \cdot BN + CM \cdot CN \geq DM \cdot DN$

1992 AMC 12/AHSME, 19

For each vertex of a solid cube, consider the tetrahedron determined by the vertex and the midpoints of the three edges that meet at that vertex. The portion of the cube that remains when these eight tetrahedra are cut away is called a [i]cuboctahedron[/i]. The ratio of the volume of the cuboctahedron to the volume of the original cube is closest to which of these? $ \textbf{(A)}\ 75\%\qquad\textbf{(B)}\ 78\%\qquad\textbf{(C)}\ 81\%\qquad\textbf{(D)}\ 84\%\qquad\textbf{(E)}\ 87\% $

1997 Estonia National Olympiad, 3

A sphere is inscribed in a regular tetrahedron. Another regular tetrahedron is inscribed in the sphere. Find the ratio of the volumes of these two tetrahedra.

1987 China National Olympiad, 5

Let $A_1A_2A_3A_4$ be a tetrahedron. We construct four mutually tangent spheres $S_1,S_2,S_3,S_4$ with centers $A_1,A_2,A_3,A_4$ respectively. Suppose that there exists a point $Q$ such that we can construct two spheres centered at $Q$ satisfying the following conditions: i) One sphere with radius $r$ is tangent to $S_1,S_2,S_3,S_4$; ii) One sphere with radius $R$ is tangent to every edges of tetrahedron $A_1A_2A_3A_4$. Prove that $A_1A_2A_3A_4$ is a regular tetrahedron.

1987 Dutch Mathematical Olympiad, 4

On each side of a regular tetrahedron with edges of length $1$ one constructs exactly such a tetrahedron. This creates a dodecahedron with $8$ vertices and $18$ edges. We imagine that the dodecahedron is hollow. Calculate the length of the largest line segment that fits entirely within this dodecahedron.

1986 Tournament Of Towns, (115) 3

Vectors coincide with the edges of an arbitrary tetrahedron (possibly non-regular). Is it possible for the sum of these six vectors to equal the zero vector? (Problem from Leningrad)

1968 Bulgaria National Olympiad, Problem 5

The point $M$ is inside the tetrahedron $ABCD$ and the intersection points of the lines $AM,BM,CM$ and $DM$ with the opposite walls are denoted with $A_1,B_1,C_1,D_1$ respectively. It is given also that the ratios $\frac{MA}{MA_1}$, $\frac{MB}{MB_1}$, $\frac{MC}{MC_1}$, and $\frac{MD}{MD_1}$ are equal to the same number $k$. Find all possible values of $k$. [i]K. Petrov[/i]

1964 All Russian Mathematical Olympiad, 053

We have to divide a cube onto $k$ non-overlapping tetrahedrons. For what smallest $k$ is it possible?

2003 District Olympiad, 4

a) Let $MNP$ be a triangle such that $\angle MNP> 60^o$. Show that the side $MP$ cannot be the smallest side of the triangle $MNP$. b) In a plane the equilateral triangle $ABC$ is considered. The point $V$ that does not belong to the plane $(ABC)$ is chosen so that $\angle VAB = \angle VBC = \angle VCA$. Show that if $VA = AB$, the tetrahedron $VABC$ is regular. Valentin Vornicu

2004 Italy TST, 1

At the vertices $A, B, C, D, E, F, G, H$ of a cube, $2001, 2002, 2003, 2004, 2005, 2008, 2007$ and $2006$ stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at $A, B, \ldots , H$ can be obtained? $(\text{a})\quad 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2005;$ $(\text{b})\quad 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007;$ $(\text{c})\quad 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.$

2003 Polish MO Finals, 5

The sphere inscribed in a tetrahedron $ABCD$ touches face $ABC$ at point $H$. Another sphere touches face $ABC$ at $O$ and the planes containing the other three faces at points exterior to the faces. Prove that if $O$ is the circumcenter of triangle $ABC$, then $H$ is the orthocenter of that triangle.