This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

1996 German National Olympiad, 3

Let be given an arbitrary tetrahedron $ABCD$ with volume $V$. Consider all lines which pass through the barycenter $S$ of the tetrahedron and intersect the edges $AD,BD,CD$ at points $A',B',C$ respectively. It is known that among the obtained tetrahedra there exists one with the minimal volume. Express this minimal volume in terms of $V$

2016 BMT Spring, 19

Regular tetrahedron $P_1P_2P_3P_4$ has side length $1$. Define $P_i$ for $i > 4$ to be the centroid of tetrahedron $P_{i-1}P_{i-2}P_{i-3}P_{i-4}$, and $P_{ \infty} = \lim_{n\to \infty} P_n$. What is the length of $P_5P_{ \infty}$?

2012 AMC 10, 23

A solid tetrahedron is sliced off a solid wooden unit cube by a plane passing through two nonadjacent vertices on one face and one vertex on the opposite face not adjacent to either of the first two vertices. The tetrahedron is discarded and the remaining portion of the cube is placed on a table with the cut surface face down. What is the height of this object? $ \textbf{(A)}\ \dfrac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \dfrac{2\sqrt{2}}{3}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \dfrac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \sqrt{2} $

2009 Spain Mathematical Olympiad, 3

Some edges are painted in red. We say that a coloring of this kind is [i]good[/i], if for each vertex of the polyhedron, there exists an edge which concurs in that vertex and is not painted red. Moreover, we say that a coloring where some of the edges of a regular polyhedron is [i]completely good[/i], if in addition to being [i]good[/i], no face of the polyhedron has all its edges painted red. What regular polyhedrons is equal the maximum number of edges that can be painted in a [i]good[/i] color and a [i]completely good[/i]? Explain your answer.

2008 AMC 10, 17

An equilateral triangle has side length $ 6$. What is the area of the region containing all points that are outside the triangle and not more than $ 3$ units from a point of the triangle? $ \textbf{(A)}\ 36\plus{}24\sqrt{3} \qquad \textbf{(B)}\ 54\plus{}9\pi \qquad \textbf{(C)}\ 54\plus{}18\sqrt{3}\plus{}6\pi \qquad \textbf{(D)}\ \left(2\sqrt{3}\plus{}3\right)^2\pi \\ \textbf{(E)}\ 9\left(\sqrt{3}\plus{}1\right)^2\pi$

2015 Sharygin Geometry Olympiad, P23

A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.

1971 IMO Shortlist, 7

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

1986 Bulgaria National Olympiad, Problem 3

A regular tetrahedron of unit edge is given. Find the volume of the maximal cube contained in the tetrahedron, whose one vertex lies in the feet of an altitude of the tetrahedron.

1975 Polish MO Finals, 2

On the surface of a regular tetrahedron of edge length $1$ are given finitely many segments such that every two vertices of the tetrahedron can be joined by a polygonal line consisting of given segments. Can the sum of the lengths of the given segments be less than $1+\sqrt3 $?

2005 Harvard-MIT Mathematics Tournament, 2

Let $ABCD$ be a regular tetrahedron with side length $2$. The plane parallel to edges $AB$ and $CD$ and lying halfway between them cuts $ABCD$ into two pieces. Find the surface area of one of these pieces.

2010 Poland - Second Round, 2

The orthogonal projections of the vertices $A, B, C$ of the tetrahedron $ABCD$ on the opposite faces are denoted by $A', B', C'$ respectively. Suppose that point $A'$ is the circumcenter of the triangle $BCD$, point $B'$ is the incenter of the triangle $ACD$ and $C'$ is the centroid of the triangle $ABD$. Prove that tetrahedron $ABCD$ is regular.

1980 Polish MO Finals, 5

In a tetrahedron, the six triangles determined by an edge of the tetrahedron and the midpoint of the opposite edge all have equal area. Prove that the tetrahedron is regular.

2004 Harvard-MIT Mathematics Tournament, 9

Given is a regular tetrahedron of volume $1$. We obtain a second regular tetrahedron by reflecting the given one through its center. What is the volume of their intersection?

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

1966 Bulgaria National Olympiad, Problem 4

It is given a tetrahedron with vertices $A,B,C,D$. (a) Prove that there exists a vertex of the tetrahedron with the following property: the three edges of that tetrahedron through that vertex can form a triangle. (b) On the edges $DA,DB$ and $DC$ there are given the points $M,N$ and $P$ for which: $$DM=\frac{DA}n,\enspace DN=\frac{DB}{n+1}\enspace DP=\frac{DC}{n+2}$$where $n$ is a natural number. The plane defined by the points $M,N$ and $P$ is $\alpha_n$. Prove that all planes $\alpha_n$, $(n=1,2,3,\ldots)$ pass through a single straight line.

1973 IMO Longlists, 1

Find the maximal positive number $r$ with the following property: If all altitudes of a tetrahedron are $\geq 1$, then a sphere of radius $r$ fits into the tetrahedron.

2007 Polish MO Finals, 5

5. In tetrahedron $ABCD$ following equalities hold: $\angle BAC+\angle BDC=\angle ABD+\angle ACD$ $\angle BAD+\angle BCD=\angle ABC+\angle ADC$ Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $AB$ and $CD$.

2008 Saint Petersburg Mathematical Olympiad, 5

All faces of the tetrahedron $ABCD $ are acute-angled triangles.$AK$ and $AL$ -are altitudes in faces $ABC$ and $ABD$. Points $C,D,K,L$ lies on circle. Prove, that $AB \perp CD$

1981 Polish MO Finals, 6

In a tetrahedron of volume $V$ the sum of the squares of the lengths of its edges equals $S$. Prove that $$V \le \frac{S\sqrt{S}}{72\sqrt{3}}$$

1985 ITAMO, 15

Three 12 cm $\times$ 12 cm squares are each cut into two pieces $A$ and $B$, as shown in the first figure below, by joining the midpoints of two adjacent sides. These six pieces are then attached to a regular hexagon, as shown in the second figure, so as to fold into a polyhedron. What is the volume (in $\text{cm}^3$) of this polyhedron? [asy] defaultpen(fontsize(10)); size(250); draw(shift(0, sqrt(3)+1)*scale(2)*rotate(45)*polygon(4)); draw(shift(-sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(165)*polygon(4)); draw(shift(sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(285)*polygon(4)); filldraw(scale(2)*polygon(6), white, black); pair X=(2,0)+sqrt(2)*dir(75), Y=(-2,0)+sqrt(2)*dir(105), Z=(2*dir(300))+sqrt(2)*dir(225); pair[] roots={2*dir(0), 2*dir(60), 2*dir(120), 2*dir(180), 2*dir(240), 2*dir(300)}; draw(roots[0]--X--roots[1]); label("$B$", centroid(roots[0],X,roots[1])); draw(roots[2]--Y--roots[3]); label("$B$", centroid(roots[2],Y,roots[3])); draw(roots[4]--Z--roots[5]); label("$B$", centroid(roots[4],Z,roots[5])); label("$A$", (1+sqrt(3))*dir(90)); label("$A$", (1+sqrt(3))*dir(210)); label("$A$", (1+sqrt(3))*dir(330)); draw(shift(-10,0)*scale(2)*polygon(4)); draw((sqrt(2)-10,0)--(-10,sqrt(2))); label("$A$", (-10,0)); label("$B$", centroid((sqrt(2)-10,0),(-10,sqrt(2)),(sqrt(2)-10, sqrt(2))));[/asy]

1995 China National Olympiad, 1

Given four spheres with their radii equal to $2,2,3,3$ respectively, each sphere externally touches the other spheres. Suppose that there is another sphere that is externally tangent to all those four spheres, determine the radius of this sphere.

1985 IMO Shortlist, 9

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

Ukrainian TYM Qualifying - geometry, II.2

Is it true that when all the faces of a tetrahedron have the same area, they are congruent triangles?

1992 Czech And Slovak Olympiad IIIA, 2

Let $S$ be the total area of a tetrahedron whose edges have lengths $a,b,c,d, e, f$ . Prove that $S \le \frac{\sqrt3}{6} (a^2 +b^2 +...+ f^2)$

1983 Canada National Olympiad, 3

The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?