This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

1976 Bulgaria National Olympiad, Problem 5

It is given a tetrahedron $ABCD$ and a plane $\alpha$ intersecting the three edges passing through $D$. Prove that $\alpha$ divides the surface of the tetrahedron into two parts proportional to the volumes of the bodies formed if and only if $\alpha$ is passing through the center of the inscribed tetrahedron sphere.

2009 Princeton University Math Competition, 6

Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the [i]square[/i] of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).

1972 USAMO, 2

A given tetrahedron $ ABCD$ is isoceles, that is, $ AB\equal{}CD$, $ AC\equal{}BD$, $ AD\equal{}BC$. Show that the faces of the tetrahedron are acute-angled triangles.

1967 IMO Shortlist, 2

Prove this proposition: Center the sphere circumscribed around a tetrahedron which coincides with the center of a sphere inscribed in that tetrahedron if and only if the skew edges of the tetrahedron are equal.

2003 National High School Mathematics League, 6

In tetrahedron $ABCD$, $AB=1,CD=3$, the distance between $AB$ and $CD$ is $2$, the intersection angle between $AB$ and $CD$ is $\frac{\pi}{3}$, then the volume of tetrahedron $ABCD$ is $\text{(A)}\frac{\sqrt3}{2}\qquad\text{(B)}\frac{1}{2}\qquad\text{(C)}\frac{1}{3}\qquad\text{(D)}\frac{\sqrt3}{3}$

2008 Baltic Way, 5

Suppose that Romeo and Juliet each have a regular tetrahedron to the vertices of which some positive real numbers are assigned. They associate each edge of their tetrahedra with the product of the two numbers assigned to its end points. Then they write on each face of their tetrahedra the sum of the three numbers associated to its three edges. The four numbers written on the faces of Romeo's tetrahedron turn out to coincide with the four numbers written on Juliet's tetrahedron. Does it follow that the four numbers assigned to the vertices of Romeo's tetrahedron are identical to the four numbers assigned to the vertices of Juliet's tetrahedron?

2016 CHMMC (Fall), 12

For a positive real number $a$, let $C$ be the cube with vertices at $(\pm a, \pm a, \pm a)$ and let $T$ be the tetrahedron with vertices at $(2a,2a,2a),(2a, -2a, -2a),(-2a, 2a, -2a),(-2a, -2a, -2a)$. If the intersection of $T$ and $C$ has volume $ka^3$ for some $k$, find $k$.

1971 Polish MO Finals, 6

A regular tetrahedron with unit edge length is given. Prove that: (a) There exist four points on the surface $S$ of the tetrahedron, such that the distance from any point of the surface to one of these four points does not exceed $1/2$; (b) There do not exist three points with this property. The distance between two points on surface $S$ is defined as the length of the shortest polygonal line going over $S$ and connecting the two points.

2006 Oral Moscow Geometry Olympiad, 2

Six segments are such that any three can form a triangle. Is it true that these segments can be used to form a tetrahedron? (S. Markelov)

1955 Miklós Schweitzer, 8

[b]8.[/b] Show that on any tetrahedron there can be found three acute bihedral angles such that the faces including these angles count among them all faces of tetrahedron. [b](G. 10)[/b]

1997 Tournament Of Towns, (539) 4

All edges of a tetrahedron $ABCD$ are equal. The tetrahedron $ABCD$ is inscribed in a sphere. $CC'$ and $DD'$ are diameters. Find the angle between the planes $ABC$' and $ACD'$. (A Zaslavskiy)

1980 All Soviet Union Mathematical Olympiad, 302

The edge $[AC]$ of the tetrahedron $ABCD$ is orthogonal to $[BC]$, and $[AD]$ is orthogonal to $[BD]$. Prove that the cosine of the angle between lines $(AC)$ and $(BD)$ is less than $|CD|/|AB|$.

2014 Online Math Open Problems, 24

Let $\mathcal A = A_0A_1A_2A_3 \cdots A_{2013}A_{2014}$ be a [i]regular 2014-simplex[/i], meaning the $2015$ vertices of $\mathcal A$ lie in $2014$-dimensional Euclidean space and there exists a constant $c > 0$ such that $A_iA_j = c$ for any $0 \le i < j \le 2014$. Let $O = (0,0,0,\dots,0)$, $A_0 = (1,0,0,\dots,0)$, and suppose $A_iO$ has length $1$ for $i=0,1,\dots,2014$. Set $P=(20,14,20,14,\dots,20,14)$. Find the remainder when \[PA_0^2 + PA_1^2 + \dots + PA_{2014}^2 \] is divided by $10^6$. [i]Proposed by Robin Park[/i]

PEN R Problems, 2

Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers.

2020 Sharygin Geometry Olympiad, 24

Let $I$ be the incenter of a tetrahedron $ABCD$, and $J$ be the center of the exsphere touching the face $BCD$ containing three remaining faces (outside these faces). The segment $IJ$ meets the circumsphere of the tetrahedron at point $K$. Which of two segments $IJ$ and $JK$ is longer?

2004 Oral Moscow Geometry Olympiad, 6

In the tetrahedron $DABC$ : $\angle ACB = \angle ADB$, $(CD) \perp (ABC)$. In triangle $ABC$, the altitude $h$ drawn to the side $AB$ and the distance $d$ from the center of the circumscribed circle to this side are given. Find the length of the $CD$.

2008 Harvard-MIT Mathematics Tournament, 19

Let $ ABCD$ be a regular tetrahedron, and let $ O$ be the centroid of triangle $ BCD$. Consider the point $ P$ on $ AO$ such that $ P$ minimizes $ PA \plus{} 2(PB \plus{} PC \plus{} PD)$. Find $ \sin \angle PBO$.

1957 Moscow Mathematical Olympiad, 365

(a) Given a point $O$ inside an equilateral triangle $\vartriangle ABC$. Line $OG$ connects $O$ with the center of mass $G$ of the triangle and intersects the sides of the triangle, or their extensions, at points $A', B', C'$ . Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G} = 3.$$ (b) Point $G$ is the center of the sphere inscribed in a regular tetrahedron $ABCD$. Straight line $OG$ connecting $G$ with a point $O$ inside the tetrahedron intersects the faces at points $A', B', C', D'$. Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G}+ \frac{D'O}{D'G} = 4.$$

1989 Nordic, 2

Three sides of a tetrahedron are right-angled triangles having the right angle at their common vertex. The areas of these sides are $A, B$, and $C$. Find the total surface area of the tetrahedron.

1956 Poland - Second Round, 6

Prove that if in a tetrahedron $ ABCD $ the segments connecting the vertices of the tetrahedron with the centers of circles inscribed in opposite faces intersect at one point, then $$AB \cdot CD = AC \cdot BD = AD \cdot BC$$ and that the converse also holds.

2009 Princeton University Math Competition, 2

Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?

1962 Vietnam National Olympiad, 3

Let $ ABCD$ is a tetrahedron. Denote by $ A'$, $ B'$ the feet of the perpendiculars from $ A$ and $ B$, respectively to the opposite faces. Show that $ AA'$ and $ BB'$ intersect if and only if $ AB$ is perpendicular to $ CD$. Do they intersect if $ AC \equal{} AD \equal{} BC \equal{} BD$?

2019 Tournament Of Towns, 5

The orthogonal projection of a tetrahedron onto a plane containing one of its faces is a trapezoid of area $1$, which has only one pair of parallel sides. a) Is it possible that the orthogonal projection of this tetrahedron onto a plane containing another its face is a square of area $1$? b) The same question for a square of area $1/2019$. (Mikhail Evdokimov)

1980 USAMO, 4

The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.

Kyiv City MO 1984-93 - geometry, 1988.10.2

Given an arbitrary tetrahedron. Prove that its six edges can be divided into two triplets so that from each triple it was possible to form a triangle.