This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2002 India IMO Training Camp, 1

Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

2017 Yasinsky Geometry Olympiad, 4

Diagonals of trapezium $ABCD$ are mutually perpendicular and the midline of the trapezium is $5$. Find the length of the segment that connects the midpoints of the bases of the trapezium.

2018 Belarusian National Olympiad, 11.4

A checkered polygon $A$ is drawn on the checkered plane. We call a cell of $A$ [i]internal[/i] if all $8$ of its adjacent cells belong to $A$. All other (non-internal) cells of $A$ we call [i]boundary[/i]. It is known that $1)$ each boundary cell has exactly two common sides with no boundary cells; and 2) the union of all boundary cells can be divided into isosceles trapezoid of area $2$ with vertices at the grid nodes (and acute angles of the trapezoids are equal $45^\circ$). Prove that the area of the polygon $A$ is congruent to $1$ modulo $4$.

1996 May Olympiad, 1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel? [img]https://1.bp.blogspot.com/-DnyNY3x4XKE/XNYvRUrLVTI/AAAAAAAAKLE/gohd7_S9OeIi-CVUVw-iM63uXE5u-WmGwCK4BGAYYCw/s400/image002.gif[/img]

2012 Middle European Mathematical Olympiad, 3

In a given trapezium $ ABCD $ with $ AB$ parallel to $ CD $ and $ AB > CD $, the line $ BD $ bisects the angle $ \angle ADC $. The line through $ C $ parallel to $ AD $ meets the segments $ BD $ and $ AB $ in $ E $ and $ F $, respectively. Let $ O $ be the circumcenter of the triangle $ BEF $. Suppose that $ \angle ACO = 60^{\circ} $. Prove the equality \[ CF = AF + FO .\]

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2006 Lithuania National Olympiad, 2

Two circles are tangent externaly at a point $B$. A line tangent to one of the circles at a point $A$ intersects the other circle at points $C$ and $D$. Show that $A$ is equidistant to the lines $BC$ and $BD$.

2014 Indonesia MO, 3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2022 European Mathematical Cup, 4

Five points $A$, $B$, $C$, $D$ and $E$ lie on a circle $\tau$ clockwise in that order such that $AB \parallel CE$ and $\angle ABC > 90^{\circ}$. Let $k$ be a circle tangent to $AD$, $CE$ and $\tau$ such that $k$ and $\tau$ touch on the arc $\widehat{DE}$ not containing $A$, $B$ and $C$. Let $F \neq A$ be the intersection of $\tau$ and the tangent line to $k$ passing through $A$ different from $AD$. Prove that there exists a circle tangent to $BD$, $BF$, $CE$ and $\tau$.

2011 Purple Comet Problems, 26

The diagram below shows two parallel rows with seven points in the upper row and nine points in the lower row. The points in each row are spaced one unit apart, and the two rows are two units apart. How many trapezoids which are not parallelograms have vertices in this set of $16$ points and have area of at least six square units? [asy] import graph; size(7cm); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); pen dotstyle = black; dot((-2,4),linewidth(6pt) + dotstyle); dot((-1,4),linewidth(6pt) + dotstyle); dot((0,4),linewidth(6pt) + dotstyle); dot((1,4),linewidth(6pt) + dotstyle); dot((2,4),linewidth(6pt) + dotstyle); dot((3,4),linewidth(6pt) + dotstyle); dot((4,4),linewidth(6pt) + dotstyle); dot((-3,2),linewidth(6pt) + dotstyle); dot((-2,2),linewidth(6pt) + dotstyle); dot((-1,2),linewidth(6pt) + dotstyle); dot((0,2),linewidth(6pt) + dotstyle); dot((1,2),linewidth(6pt) + dotstyle); dot((2,2),linewidth(6pt) + dotstyle); dot((3,2),linewidth(6pt) + dotstyle); dot((4,2),linewidth(6pt) + dotstyle); dot((5,2),linewidth(6pt) + dotstyle); [/asy]

2023 Sharygin Geometry Olympiad, 13

The base $AD$ of a trapezoid $ABCD$ is twice greater than the base $BC$, and the angle $C$ equals one and a half of the angle $A$. The diagonal $AC$ divides angle $C$ into two angles. Which of them is greater?

2017 Romania Team Selection Test, P1

Let $ABCD$ be a trapezium, $AD\parallel BC$, and let $E,F$ be points on the sides$AB$ and $CD$, respectively. The circumcircle of $AEF$ meets $AD$ again at $A_1$, and the circumcircle of $CEF$ meets $BC$ again at $C_1$. Prove that $A_1C_1,BD,EF$ are concurrent.

2012 AMC 12/AHSME, 20

A trapezoid has side lengths $3, 5, 7,$ and $11$. The sum of all the possible areas of the trapezoid can be written in the form of $r_1 \sqrt{n_1} + r_2 \sqrt{n_2} + r_3$, where $r_1, r_2,$ and $r_3$ are rational numbers and $n_1$ and $n_2$ are positive integers not divisible by the square of a prime. What is the greatest integer less than or equal to \[r_1 + r_2 + r_3 + n_1 + n_2?\] $ \textbf{(A)}\ 57\qquad\textbf{(B)}\ 59\qquad\textbf{(C)}\ 61\qquad\textbf{(D)}\ 63\qquad\textbf{(E)}\ 65 $

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2014 India Regional Mathematical Olympiad, 1

let $ABCD$ be a isosceles trapezium having an incircle with $AB$ parallel to $CD$. let $CE$ be the perpendicular from $C$ on $AB$ prove that $ CE^2 = AB. CD $

2017 Iran Team Selection Test, 1

$ABCD$ is a trapezoid with $AB \parallel CD$. The diagonals intersect at $P$. Let $\omega _1$ be a circle passing through $B$ and tangent to $AC$ at $A$. Let $\omega _2$ be a circle passing through $C$ and tangent to $BD$ at $D$. $\omega _3$ is the circumcircle of triangle $BPC$. Prove that the common chord of circles $\omega _1,\omega _3$ and the common chord of circles $\omega _2, \omega _3$ intersect each other on $AD$. [i]Proposed by Kasra Ahmadi[/i]

1976 Czech and Slovak Olympiad III A, 3

Consider a half-plane with the boundary line $p$ and two points $M,N$ in it such that the distances $Mp$ and $Np$ are different. Construct a trapezoid $MNPQ$ with area $MN^2$ such that $P,Q\in p.$ Discuss conditions of solvability.

2005 Romania National Olympiad, 3

Let $ABCD$ be a quadrilateral with $AB\parallel CD$ and $AC \perp BD$. Let $O$ be the intersection of $AC$ and $BD$. On the rays $(OA$ and $(OB$ we consider the points $M$ and $N$ respectively such that $\angle ANC = \angle BMD = 90^\circ$. We denote with $E$ the midpoint of the segment $MN$. Prove that a) $\triangle OMN \sim \triangle OBA$; b) $OE \perp AB$. [i]Claudiu-Stefan Popa[/i]

2022 AMC 12/AHSME, 20

Tags: trapezoid
Isosceles trapezoid $ABCD$ has parallel sides $\overline{AD}$ and $\overline{BC},$ with $BC < AD$ and $AB = CD.$ There is a point $P$ in the plane such that $PA=1, PB=2, PC=3,$ and $PD=4.$ What is $\tfrac{BC}{AD}?$ $\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}$

2005 Dutch Mathematical Olympiad, 4

Let $ABCD$ be a quadrilateral with $AB \parallel CD$, $AB > CD$. Prove that the line passing through $AC \cap BD$ and $AD \cap BC$ passes through the midpoints of $AB$ and $CD$.

1988 China Team Selection Test, 2

Let $ABCD$ be a trapezium $AB // CD,$ $M$ and $N$ are fixed points on $AB,$ $P$ is a variable point on $CD$. $E = DN \cap AP$, $F = DN \cap MC$, $G = MC \cap PB$, $DP = \lambda \cdot CD$. Find the value of $\lambda$ for which the area of quadrilateral $PEFG$ is maximum.

2017 Novosibirsk Oral Olympiad in Geometry, 6

In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.

2023 Macedonian Balkan MO TST, Problem 3

Let $ABC$ be a triangle such that $AB<AC$. Let $D$ be a point on the segment $BC$ such that $BD<CD$. The angle bisectors of $\angle ADB$ and $\angle ADC$ meet the segments $AB$ and $AC$ at $E$ and $F$ respectively. Let $\omega$ be the circumcircle of $AEF$ and $M$ be the midpoint of $EF$. The ray $AD$ meets $\omega$ at $X$ and the line through $X$ parallel to $EF$ meets $\omega$ again at $Y$. If $YM$ meets $\omega$ at $T$, show that $AT$, $EF$ and $BC$ are concurrent. [i]Authored by Nikola Velov[/i]

1967 AMC 12/AHSME, 12

If the (convex) area bounded by the x-axis and the lines $y=mx+4$, $x=1$, and $x=4$ is $7$, then $m$ equals: $\textbf{(A)}\ -\frac{1}{2}\qquad \textbf{(B)}\ -\frac{2}{3}\qquad \textbf{(C)}\ -\frac{3}{2} \qquad \textbf{(D)}\ -2 \qquad \textbf{(E)}\ \text{none of these}$

1992 Canada National Olympiad, 3

In the diagram, $ ABCD$ is a square, with $ U$ and $ V$ interior points of the sides $ AB$ and $ CD$ respectively. Determine all the possible ways of selecting $ U$ and $ V$ so as to maximize the area of the quadrilateral $ PUQV$. [img]http://i250.photobucket.com/albums/gg265/geometry101/CMO1992Number3.jpg[/img]